Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10003043
A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm
Abstract:
Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.
Digital Article Identifier (DAI):

References:

[1] T. F. Banchoff and S. T. Lovett, Differential geometry of curves and surfaces. CRC Press, 2010.
[2] Y. Bestaoui, “General representation of 3d curves for an unmanned aerial vehicle using the frenet-serret frame,” AIAA, 2007.
[3] P. Bezier, “Essais de definition numeriques des courbes et surfaces non mathematiques,” Systeme Unisurf, Automatisme,13, 1968.
[4] C. L. Bottasso, D. Leonello, and B. Savini, “Path planning for autonomous vehicles by trajectory smoothing using motion primitives,” Control Systems Technology, IEEE Transactions on, vol. 16, no. 6, pp. 1152–1168, 2008.
[5] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents,” American Journal of mathematics, pp. 497–516, 1957.
[6] M. Hwangbo, J. Kuffner, and T. Kanade, “Efficient two-phase 3d motion planning for small fixed-wing uavs,” in Robotics and Automation, 2007 IEEE International Conference on. IEEE, 2007, pp. 1035–1041.
[7] V. P. Kostov, E. V. Degtiariova-Kostova et al., “The planar motion with bounded derivative of the curvature and its suboptimal paths,” Acta Math. Univ. Comenianae, vol. 64, no. 2, pp. 185–226, 1995.
[8] N. Ozalp and O. K. Sahingoz, “Optimal uav path planning in a 3d threat environment by using parallel evolutionary algorithms,” in Unmanned Aircraft Systems (ICUAS), 2013 International Conference on. IEEE, 2013, pp. 308–317.
[9] M. Shah and N. Aouf, “3d cooperative pythagorean hodograph path planning and obstacle avoidance for multiple uavs,” in Cybernetic Intelligent Systems (CIS), 2010 IEEE 9th International Conference on. IEEE, 2010, pp. 1–6.
[10] M. Shanmugavel, A. Tsourdos, R. Zbikowski, B. A. White, C. Rabbath, and N. Lechevin, “A solution to simultaneous arrival of multiple uavs using pythagorean hodograph curves,” in American Control Conference, 2006. IEEE, 2006, pp. 6–pp.
[11] T. R. Wan, W. Tang, and H. Chen, “A real-time 3d motion planning and simulation scheme for nonholonomic systems,” Simulation Modelling Practice and Theory, vol. 19, no. 1, pp. 423–439, 2011.
[12] K. Yang, S. K. Gan, and S. Sukkarieh, “An efficient path planning and control algorithm for ruavs in unknown and cluttered environments,” Journal of Intelligent and Robotic Systems, vol. 57, no. 1-4, pp. 101–122, 2010.

Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007