Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29522


Select areas to restrict search in scientific publication database:
10001222
A New Reliability Allocation Method Based On Fuzzy Numbers
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method, and gives concrete processes on determining the factor and sub-factor sets, weight sets, judgment set, and multi-stage fuzzy evaluation. To determine the weight of factor and sub-factor sets, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.
Digital Object Identifier (DOI):

References:

[1] Department of Defense of USA. MIL-HDBK-338B. Electronic design reliability handbook; 1988 October.
[2] Advisory Group of Reliability of Electronic Equipment (AGREE). Reliability of military electronic equipment. Office of the Assistant Secretary of Defense Research and Engineering: Washington, DC; 1957.
[3] Karmiol ED. Reliability apportionment. Preliminary report EIAM 5, Task II. General electric. Schenectady, NY; 1965.
[4] Felice FD, Bona GD, Falcone D, Silvestri A. New reliability allocation methodology: the integrated factors method. Int J Oper Quant Manag 2001; 16:67–85.
[5] Wang Y, Yam RCM,Zuo MJ, Tse P. A comprehensive reliability allocation method for design of CNC lathes. Reliability Engineering and System Safety 2001; 72:247–52.
[6] Liaw CS, Chang YC, Chang KH, Chang TY. ME-OWA based DEMATEL reliability apportionment method. Expert Systems with Applications 2011; 38:9713–23.
[7] Kim Kyungmee, Yang Yoonjung, Zuo Ming. A new reliability weight for reducing the occurrence of severe failure effects. Reliability Engineering and System Safety. 2013; 117:81–8.
[8] Om PrakashYadav, Xing Zhuang. A practical reliability allocation method considering modified criticality factors. Reliability Engineering and System Safety. 2014: 129:7–65.
[9] V. Sriramdas, S.K. Chaturvedi, H. Gargama. Fuzzy arithmetic based reliability allocation approach during early design and development. Expert Systems with Applications, 2014, 41:3444-3449.
[10] Zhao Dezi, Wen Weidong, Duan Cheng-mei. A Model of Aeroengine Reliability Prediction Based on Fuzzy Number. Journal of Aerospace Power, 2004, 19(3):320-325
[11] Hao Xiaofeng. Research on Optimal Allocation Method of Reliability Allocation of Complicated System. Shenyang: Northeastern University, 2008.
[12] Wang Peizhuang. Fuzzy mathematics and optimization. Beijing: Beijing Normal University Press, 2013.
[13] Wang, Y. M., Yanga, J. B., Xua, D. L., & Chin, K. S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets and Systems, 157, 919–926.
[14] Du Li, Huang Hongzhong, Song Wei. Reliability allocation based on multi-stage fuzzy evaluation method. Machine Design and Research, 2009, 25(1):107-110.
[15] Gaolimin, Wu Kai, Sun Yu. The study and application of the fuzzy allocation method of reliability for mechanical system. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12):1798-1802.
Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007