Excellence in Research and Innovation for Humanity

International Science Index

Select areas to restrict search in scientific publication database:
A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations
In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.
Digital Article Identifier (DAI):


[1] J Nagumo, S Arimoto, S Yoshizawa. An active pulse transmission line simulating nerve axon, Proc. IRE., 1962, 50: 91-102.
[2] C V Pao. A mixed initial boundary value problem arising in neurophysiology, J. Math. Anal. Appl., 1975, 52: 105-119.
[3] X Cui. Sobolev-Volterra projection and numerical analysis of finite element methods for integro-differential equations, Acta Mathematicae Applicatae Sinica, 2001, 24(3): 441-454.
[4] Y Liu, H Li, W Gao, S He. A new splitting positive definite mixed element method for pseudo-hyperbolic equations, Mathematica Applicata, 2011, 24(1): 104-111.
[5] Y Liu, H Li, J F Wang, S He. Splitting positive definite mixed element methods for pseudo-hyperbolic equations, Numer. Methods Partial Differential Equations, DOI 10.1002/num.20650(2010).
[6] Y Liu, H Li. H1-Galerkin mixed finite element methods for pseudohyperbolic equations, Appl. Math. Comput., 2009, 212: 446-457.
[7] Y Liu, J F Wang, H Li, W Gao, S He. A new splitting H1-Galerkin mixed method for pseudo-hyperbolic equations, International Journal of Engineering and Natural Sciences, 2011, 5(2): 58-63.
[8] Y Liu, H Li, S He. Error estimates of H1-Galerkin mixed finite element methods for pseudo-hyperbolic partial integro-differential equation
[J]. Numerical Mathematics A Journal of Chinese Universities, 2010, 32(1): 1-20.(in Chinese)
[9] Y Liu, H Li. A new mixed finite element method for pseudo-hyperbolic equation, Mathematica Applicata, 2010, 23(1): 150-157.
[10] H Guo, H X Rui. Least-squares Galerkin procedures for pseudohyperbolic equations, Appl. Math. Comput., 2007, 189: 425-439.
[11] J Jr Douglas, R Ewing, M Wheeler. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Anal. Num'er., 1983, 17: 249-265.
[12] F Brezzi, J Jr Douglas, L Marini. Two families of mixed finite elements for second order elliptic problems, Numer. Math., 1985, 47: 217-235.
[13] F Brezzi, J Jr Douglas, R Dur'an, M Fortin. Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 1987, 51: 237-250.
[14] Z D Luo. Theory Bases and Applications of Mixed Finite Element Methods, Science Press, Beijing, 2006.(in Chinese)
[15] Y P Chen, Y Q Huang. The superconvergence of mixed finite element methods for nonlinear hyperbolic equations, Communications in Nonlinear Science and Numerical Simulation, 1998, 3(3): 155-158.
[16] D P Yang. A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media, Numerical Methods for Partial Differential Equations, 2001, 17: 229-249.
[17] G Ma, D Y Shi. The nonconforming mixed finite element method for generalized nerve conduction type equation, Mathematics In Practice And Theory, 2010, 40(4): 217-223.(in Chinese)
[18] D Y Shi, H B Guan. A kind of full-discrete nonconforming finite element method for the parabolic variational inequality, Acta Mathematicae Applicatae Sinica, 2008, 31(1): 90-96.
[19] D Y Shi, J C Ren. Nonconforming mixed finite element method for the stationary conduction-convection problem, Inter. J. Numer. Anal. Model., 2009, 6(2): 293-310.
[20] A K Pani, R K Sinha, A K Otta. An H1-Galerkin mixed method for second order hyperbolic equations, Inter. J. Numer. Anal. Model., 2004, 1(2): 111-129.
[21] Z X Chen. Expanded mixed finite element methods for linear second order elliptic problems I, RAIRO Mod'el. Math. Anal. Num'er., 1998, 32(4): 479-499.
Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007