Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29912


Select areas to restrict search in scientific publication database:
9997678
A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates
Abstract:
Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.
Digital Object Identifier (DOI):

References:

[1] L. Jian-xia, H. Zhong-xi, and C. Xiao-qing, "Numerical-Study-of-Hypersonic-Glide-Vehicle-Based-On Blunted-Waverider," World Academy of Science, Engineering and Technology, vol. 55, 2011.
[2] A. Charoenpon and E. Pankeaw, "Method-of-Finding-Aerodynamic-Characteristic-Equations-of-Missile-for-Trajectory-Simulation," World Academy of Science, Engineering and Technology, vol. 57, 2011.
[3] J. Cecrdle and J. Malecek, "Conceptual-Design-of-Aeroelastic-Demonstrator-for-Whirl-Flutter-Simulation," World Academy of Science, Engineering and Technology, vol. 68, 2012.
[4] G. Rubio, E. Valero, and S. Lanzan, "Computational-Fluid-Dynamics-Expert-System-using-Artificial-Neural-Networks," World Academy of Science, Engineering and Technology, vol. 63, 2012.
[5] D. Hu, A. Sarosh, and Y.-F. Dong, "An Improved Particle Swarm Optimizer for Parametric Optimization of Flexible Satellite Controller," Applied Mathematics and Computation, vol. 217, pp. 8512-8521, 2011.
[6] A. Sarosh, H. Di, and D. Yun-Feng, "A TIPSO Algorithm Assessment for Aerothermodynamic Optimization of Hypersonic Compression Systems," Engineering Optimization, vol. 45, pp. 591-608, 2013.
[7] Sarosh, D. Yun-Feng, and M. Shoaib, "An Aerothermodynamic and Mass-Model Integrated Optimization Framework for Highly-Integrated Forebody-Inlet Configurations," Applied Mechanics and Materials, vol. 245, pp. 277-282, 2013.
[8] Marsh, P. M. Todd, and G. Gigerenzer, "Cognitive Heuristics," JP Leighton and RJ Sternberg (ed. s), The Nature of Reasoning, Cambridge University Press, Cambridge, MA, USA, pp. 273-287, 2004.
[9] Sarosh, C. Shi-Ming, and D. Yun-Feng, "A Difference-Fractional FOM Decision Method for Down-Selection of Hypersonic Compression System Configurations," Aerospace Science and Technology, 2012.
[10] P. Ortwerth, "Scramjet Flowpath Integration," Scramjet Propulsion, Reston, VA, American Institute of Aeronautics and Astronautics, Inc., 2000, pp. 1105-1293, 2000.
Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007