Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
2170
An Automatic Sleep Spindle Detector based on WT, STFT and WMSD
Abstract:
Sleep spindles are the most interesting hallmark of stage 2 sleep EEG. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Sleep Spindles are also promising objective indicators for neurodegenerative disorders. Visual spindle scoring however is a tedious workload. In this paper three different approaches are used for the automatic detection of sleep spindles: Short Time Fourier Transform, Wavelet Transform and Wave Morphology for Spindle Detection. In order to improve the results, a combination of the three detectors is presented and comparison with human expert scorers is performed. The best performance is obtained with a combination of the three algorithms which resulted in a sensitivity and specificity of 94% when compared to human expert scorers.

References:

[1] De Gennaro, L., Ferrara, M. Sleep spindles: an overview. Sleep Med Rev; pp. 7:423-40, 2003.
[2] Ktonas, P.Y., Golemati, S., Xanthopoulos, P. , Sakkalis, V., Ortigueira, M.D, et al. Time-frequency analysis methods to quantify the timevarying microstructure of sleep EEG spindles: Possibility for dementia biomarkers? J. of Neuroscience Methods, Vol 185-1: 133-142, 2009.
[3] Causa L., Held C.M., Causa J., Estévez P.A., Perez C.A., Chamorro R., Garrido M., Algar├¡n C., Peirano P. 2010. Automated sleep-spindle detection in healthy children polysomnograms. s.l. : IEEE Trans Biomed Eng.;57(9):2135-46, 2010.
[4] Steriade, M., Jones, E.G., Llinas, R.: Thalamic Oscillations and Signaling. Neuroscience Institute Publications. John Wiley & Sons, New York (1990)
[5] Ahmed B., Redissi A., Tafreshi R. 2009. An automatic sleep spindle detector based on wavelets and the teager energy operato. s.l. : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 1:2596-9, 2009.
[6] Duman, F., Erogul, O., Telatar, Z., & Yetkin, S. Automatic sleep spindle detection and localization algorithm. Antalya, Turkey, 2005.
[7] Gör├╝r D., Halici U., Aydin H., Ongun G., Ozgen F., Leblebicioglu K. 2003. , Sleep Spindles Detection Using Autoregressive Modeling. s.l. : Proc. of ICANN/ICONIP, 2003.
[8] Ventouras E., Monoyiou E., Ktonas P., Paparrigopoulos T., Dikeos D., Uzunoglu N., Soldatos C. 2005. Sleep Spindle Detection Using Artificial Neural Networks Trained with Filtered Time-Domain EEG: A Feasibility Study. s.l. : Computer Methods and Programs in Biomedicine 78(3):191-207, 2005.
[9] Duman F., Erdamar A., Erogul O., Telatar Z., Yetkin S. 2009. Efficient sleep spindle detection algorithm with decision tree. s.l. : Expert Systems with Applications, Vol. 36, No. 6. pp. 9980-9985, 2009.
[10] Causa L., Held C.M., Causa J., Estévez P.A., Perez C.A., Chamorro R., Garrido M., Algar├¡n C., Peirano P. 2010. Automated sleep-spindle detection in healthy children polysomnograms. s.l. : IEEE Trans Biomed Eng.;57(9):2135-46, 2010.
[11] Proakis, J., Manolakis, D., Digital Signal Processing, 4th Ed., Prentice- Hall, 2006.
[12] Omerhodzic, I., Avdakovic,S., Nuhanovic, A., Dizdarevic, K. and Rotim, K. Energy Distribution of EEG Signal Components by Wavelet Transform, pp45-60 IInTech publishing, 2012
[13] Rechtschaffen, A, Kales, A. A manual of standardised terminology, techniques and scoring system for sleep stages of human subjects. Washington, DC: Public Health Service, U.S. Government Printing Office; 1968.
[14] Costa, J., Ortigueira, M., Batista, A. Short Time Fourier Transform and Automatic Visual Scoring for the detection of Sleep Spindles. DOCEIS 2012. Springer, IFIP AICT series v.372, p. 267-272.
[15] Devuyst, S., Dutoit, T., Didier, J. F. et al. Automatic sleep spindle detection in patients with sleep disorders. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1: 3883-3886, 2006.
[16] Costa, J., Ortigueira, M.D., Batista, A., Paiva, T., "Threshold choice for automatic spindle detection". Proc. IWSSIP2012; 2012
[17] Schönwald, S., Santa-Helena, E., Rossatto, R., Chaves, M. and Gerhardt, G. Benchmarking matching pursuit to find sleep spindles, Journal of Neuroscience Methods Vol 156 1-2: 314-321, 2006.
Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007