Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
2281
An H1-Galerkin Mixed Method for the Coupled Burgers Equation
Abstract:
In this paper, an H1-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived.

References:

[1] R C Mittal, G Arora. Numerical solution of the coupled viscous Burgers- equation, Communications in Nonlinear Science and Numerical Simulation, 2010, 16(3): 1304-1313.
[2] A K Pani. An H1-Galerkin mixed finite element methods for parabolic partial differential equations, SIAM J. Numer. Anal., 1998, 35: 712-727.
[3] A K Pani, G Fairweather. H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA Journal of Numerical Analysis., 2002,22: 231-252.
[4] D Y Shi, H H Wang. An H1-Galerkin nonconforming mixed finite element method for integro-differential equation of parabolic type, Journal of Mathematical Research & Exposition, 2009, 29(5): 871-881.
[5] R W Wang. Error estimates for H1-Galerkin mixed finite element methods hyperbolic type integro- differential equation, Math. Numer. Sin., 2006, 28(1): 20-30. (in Chinese)
[6] Y Liu, H Li, S He. Error estimates of H1-Galerkin mixed finite element methods for pseudo-hyperbolic partial integro-differential equation, Numerical Mathematics A Journal of Chinese Universities, 2010, 32(1): 1-20.(in Chinese)
[7] L Guo, H Z Chen. H1-Galerkin mixed finite element methods for the Sobolev equation, Journal of Systems Science and Mathematical Sciences, 2006, 26(3): 301-314.(in Chinese)
[8] D Y Shi, H H Wang, Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic Meshes, Acta Mathematicae Applicatae Sinica (English Series), 2009, 25(2): 335-344.
[9] Y Liu, H Li. H1-Galerkin mixed finite element methods for pseudohyperbolic equations, Appl. Math. Comput., 2009, 212: 446-457.
[10] Y Liu, J F Wang, H Li, W Gao, S He. A new splitting H1-Galerkin mixed method for pseudo-hyperbolic equations, International Journal of Engineering and Natural Sciences, 2011, 5(2): 58-63.
[11] Z J Zhou. An H1-Galerkin mixed finite element method for a class of heat transport equations, Applied Mathematical Modelling, 2010, 34(9): 2414-2425.
[12] J F Wang, Y Liu, H Li, X Y Li. H1-Galerkin mixed element method for the coupling nonlinear parabolic partial equations, Pure Mathematics, 2011, 1(2): 73-79.(in Chinese)
[13] Y Liu, H Li, J F Wang. Error estimates of H1-Galerkin mixed finite element method for Schr¨odinger equation. Appl. Math. J. Chinese Univ. 2009, 24(1): 83-89.
[14] Y Liu, H Li. A new mixed finite element method for pseudo-hyperbolic equation, Mathematica Applicata, 2010, 23(1): 150-157.
[15] Y. Liu. Analysis and numerical simulation of nonstandard mixed element methods, PhD thesis, Inner Mongolia University, Hohhot, China, 2011.
[16] A K Pani, R K Sinha, A K Otta. An H1-Galerkin mixed method for second order hyperbolic equations, Inter Journal of Numerical Anal and Modeling., 2004,1(2): 111-129.
[17] H Z Chen, H Wang. An optimal-order error estimate on an H1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow, Numer. Methods Partial Differential Equations, 2010, 26: 188-205.
[18] H T Che, Y J Wang, Z J Zhou. An optimal error estimates of H1-Galerkin expanded mixed finite element methods for nonlinear viscoelasticity-type equation, Mathematical Problems in Engineering, Volume 2011, Article ID 570980, 18 pages. doi:10.1155/2011/570980.
[19] M F Wheeler. A priori L2-error estimates for Galerkin approximations to parabolic differential equation, SIAM J. Numer. Anal.,1973, 10: 723- 749.
Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007