Excellence in Research and Innovation for Humanity

International Science Index

Select areas to restrict search in scientific publication database:
Application of Genetic Algorithms to Feature Subset Selection in a Farsi OCR
Dealing with hundreds of features in character recognition systems is not unusual. This large number of features leads to the increase of computational workload of recognition process. There have been many methods which try to remove unnecessary or redundant features and reduce feature dimensionality. Besides because of the characteristics of Farsi scripts, it-s not possible to apply other languages algorithms to Farsi directly. In this paper some methods for feature subset selection using genetic algorithms are applied on a Farsi optical character recognition (OCR) system. Experimental results show that application of genetic algorithms (GA) to feature subset selection in a Farsi OCR results in lower computational complexity and enhanced recognition rate.
Digital Article Identifier (DAI):


[1] Oliveira, L. S., Benahmed, N., Sabourin, R., Bortolozzi, F., Suen, C. Y., "Feature Subset Selection Using Genetic Algorithms for Handwritten Digit Recognition" Proc. XIV Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI-01), P.362, 2001.
[2] Yang, J., Honavar, V., "Feature Subset Selection Using a Genetic Algorithm," Proc. IEEE Intelligent Systems, vol. 13, no. 2, pp. 44- 49, 1998.
[3] Sarfraz, M., Nawaz, S., N., Al-Khuraidly A., "Offline Arabic Text Recognition System" Proc. 2003 International Conference on Geometric Modeling and Graphics (GMAG'03), 2003.
[4] Deb, K., "Genetic Algorithm in Search and Optimization: the Technique and Applications" Proc. International Workshop on Soft Computing and Intelligent Systems, pp. 58-87, Calcutta, India, 1998.
[5] Kudo M, Sklansky J. , "Comparison of Algorithms that Select Features for Pattern Classifiers" Pattern Recognition, Vol.33, pp.25-41, 2000.
[6] Kim, G., Kim, S., "Feature Selection Using Genetic Algorithms for Handwritten Character Recognition" Proc. Seventh International Workshop on Frontiers in Handwritten Recognition, Amsterdam, 2000.
[7] Sural, S., Das, P. K., "A Genetic Algorithm for Feature Selection in a Neuro-Fuzzy OCR System" Proc. Sixth International Conference on Document Analysis and Recognition (ICDAR-01), P.0987, 2001.
[8] Morita, M., Sabourin, R., Bortolozzi, F., Suen, C. Y., "Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition " Proc. Seventh International Conference on Document Analysis and Recognition (ICDAR-03), Vol.2, P.666, 2003.
[9] Shi, D., Shu, W., Liu, H., "Feature Selection for Handwritten Chinese Character Recognition Based on Genetic Algorithms" Proc. IEEE Int. Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4201-6, 1998.
[10] Ebrahimi, A., Kabir, E., "A Two Step Method for the Recognition of Printed Subwords", Iranian Journal of Electrical and Computer Engineering, Vol.2, No.2, pp.57-62, 2005 (in Farsi).
Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007