Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29912

Select areas to restrict search in scientific publication database:
Capability Prediction of Machining Processes Based on Uncertainty Analysis
Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.
Digital Object Identifier (DOI):


[1] Nee, A. Y. C., Tao, Z. J., and Senthil Kumar, A., An Advanced Treatise on Fixture Design and Planning (2004), USA: World Scientific.
[2] Cecil J., Mayer R. and Hari U., An integrated methodology for fixture design, Journal of Intelligent Manufacturing, Vol. 7, No. 2 (1996), pp. 95-106.
[3] Subramaniam V., Senthil Kumar A. and Seow K. C., A multi-agent approach to fixture design, Journal of Intelligent Manufacturing, Vol. 12, No. 1 (2001), pp. 31-42.
[4] Asada, H. and By, A. B., Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures, IEEE Transactions on Robotics and Automation, Vol.1, No.1 (1985), pp. 86–94.
[5] Rong, Y. and Bai, Y., Machining accuracy analysis for computer-aided fixture design verification. Journal of Manufacturing Science and Engineering, Vol. 118 (1996), pp. 289–300.
[6] Choudhuri, S. A. and DeMeter E. C., Tolerance analysis of machining fixture locators, Journal of Manufacturing Science and Engineering, Vol. 121, No. 2 (1996), pp.273–281.
[7] Rong, W., Hu, W., Kang Y., Zhang, Y., and Yen, D. W., Locating error analysis and tolerance assignment for computer-aided fixture design, International Journal of Production Research, Vol. 39, No. 15 (2001), pp. 3529-3545.
[8] Zhang, Y., Hu, W., Rong, Y., and Yen, D. W., Graph-based set-up planning and tolerance decomposition for computer-aided fixture design, International Journal of Production Research, Vol. 39, No. 14 (2001), pp. 3109-3126.
[9] Sangnui, S. and Peters, F., The impact of surface error on the location and orientation of a cylindrical workpiece in a fixture. Journal of Manufacturing Science and Engineering –Transactions of the ASME, Vol. 123 (2001), pp. 325–330.
[10] Wang, M. Y., Tolerance analysis for fixture layout design. Assembly Automation, Vol. 22, No.2 (2002), pp. 153–162.
[11] Kang, Y., Rong Y., and Yang, J. C., Computer-Aided Fixture Design Verification. Part 2.Tolerance Analysis, International Journal of Advanced Manufacturing Technology, Vol. 21 (2003), pp. 836–841.
[12] Xiong, C.H., Li, Y.F., Rong, Y., and Xiong, Y.L., Qualitative analysis and quantitative evaluation of fixturing, Robotics and Computer Integrated Manufacturing, Vol. 18, No. 5 (2002), pp. 335–342.
[13] Xiong, C. H., Ding, H., and Xiong, Y. L., Fundamentals of Robotic Grasping and Fixturing, Series on manufacturing systems and technology-Vol.3 (2003), USA: World Scientific Publishing.
[14] Deng, H. and Melkote, S. N., Determination of minimum clamping forces for dynamically stable fixturing, International Journal of Machine tools and Manufacture, Vol. 46 No. 7–8 (2006), pp. 847–857.
[15] Qin, G. H., Zhang, W. H., and Wan, M., A mathematical approach to analysis and optimal design of a fixture locating scheme, International Journal of Advanced Manufacturing Technology, Vol. 29 (2006), pp. 349–359.
[16] Chaiprapat, S. and Rujikietgumjorn, S., Modeling of positional variability of a fixture workpiece due to locating errors, International Journal of Advanced Manufacturing Technology, Vol. 36 (2008), pp. 724–731.
[17] Abe, G., Aritoshi, M., Tomita, T., Shirase, K., Machining Error Compensation Based on 3D Surface Model Modified by Measured Accuracy, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Special Issue on Advanced Manufacturing Technology, Vol. 2, No. 4 (2008), pp. 792-799.
[18] Armillotta A., Moroni G., Polini W., and Semeraro Q., A Unified approach to kinematic and tolerance analysis of locating fixtures, Journal of Computing and Information Science in Engineering, Vol. 10, No. 021009 (2010), pp. 1-11.
[19] Vishnupriyan, S., Majumder, M. C., and Ramachandran, K. P., Optimal fixture parameters considering locator errors, International Journal of Production Research, Vol. 49, No. 21(2011), pp. 6343-6341.
[20] Zhu, S.W., Ding, G.F., Ma, S.W., Yan, K.Y., and Qin S. F., Workpiece Locating Error Prediction and Compensation in Fixtures, International Journal of Advanced Manufacturing Technology,Vol.67, pp.1423–1432, 2013.
[21] Khodaygan S., A method for locator errors compensation in the fixture -workpiecesystem, SAE Journal of Material and Manufacturing, Vol. 6, No.3 (2013), doi:10.4271/2013-01-1382.
[22] Khodaygan S., Manufacturing error compensation based on cutting tool location correction in machining processes, International Journal of Computer Integrated Manufacturing, Vol. 27, No. 11(2014), pp. 969-978.
[23] Khodaygan, S. and Movahhedy, M. R., Tolerance analysis of assemblies with asymmetric tolerances by unified uncertainty – accumulation model based on fuzzy logic. International Journal Advanced Manufacturing Technology, Vol. 53, No. 5–8 (2010-a), pp. 777–788.
[24] Khodaygan S., Movahhedy M. R., SaadatFomani M., Tolerance analysis of mechanical assemblies based on modal interval and small degrees of freedom (MI-SDOF) concepts, International Journal of Advanced Manufacturing Technology, Vol.50 (2010-b), pp.1041–1061.
[25] Khodaygan S., Movahhedy M. R., SaadatFomani M., Fuzzy - Small Degrees of Freedom Representation of Linear and Angular Variations in Mechanical Assemblies for Tolerance Analysis and Allocation, Mechanism and Machine Theory, Vol. 46 (2011), pp. 558–573.
[26] Khodaygan, S. and Movahhedy, M. R., Fuzzy-based analysis of process capability for quality assessment in mechanical assemblies, International Journal of Production Research, Vol. 50, No.12 (2012), pp. 3395-3415.
[27] Greenwood W. H., Chase K. W., Worst case tolerance analysis with nonlinear problems. Journal of Engineering for Industry-Transactions of the ASME, Vol. 110 (1988), pp.232–235
[28] Greenwood W. H., Chase K. W., Root sum squares tolerance analysis with nonlinear problems, Journal of Engineering for Industry-Transactions of the ASME, Vol. 112 (1990), pp.382–384
[29] Wu, F., Dantan, J. Y., Etienne, A., Siadat, A., and Martin, P., Improved algorithm for tolerance allocation based on Monte Carlo simulation and discrete optimization, Computers & Industrial Engineering, Vol. 56, No. 4 (2009), pp. 1402-1413.
[30] Relyea D.B., The Practical Application of the Process Capability Study: Evolving From Product Control to Process Control (2011), CRC Press.
Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007