Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
1467
Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques
Abstract:
Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.
Digital Article Identifier (DAI):

References:

[1] Z. P. Liang, P. C. Lauterbur, "Principles of Magnetic Resonance Imaging, A signal processing perspective", IEEE Press, New York, 2000.
[2] A. M. Aibinu, M. J.E. Salami, A. A. Shafie and A. R. Najeeb, " Model Order Determination for MRI Signal", accepted for publication , 2008.
[3] D. G. Nishimura, "Principles of Magnetic Resonance Imaging", April 1996.
[4] M. R. Smith, S. T. Nichols, R. M. Henkelman and M. L. Wood, "Application of Autoregressive Moving Average Parametric Modeling in Magnetic Resonance Image Reconstruction", IEEE Transactions on Medical Imaging, Vol. M1-5:3, pp 257 - 261, 1986.
[5] F. J. Harris,"On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform", Proceedings of the IEEE. Vol. 66, January 1978.
[6] M. R. Smith, S. T. Nichols, R. Constable and R. Henkelman, "A quantitative comparison of the TERA modeling and DFT magnetic resonance image reconstruction techniques", Magn. Reson. Med., Vol. 19 pp. 1-19, 1991.
[7] K. H. Chon, R. J. Cohen, "Linear and Non-Linear ARMA Model Parameter Estimation Using Artificial Neural Network", IEEE Transactions on BioMedical Engineering, Vol. 44, No 3, pp 168 - 174, 1997.
[8] K. H. Chon, D. Hoyer, A. A Armoundas, N-H Holstein-Rathlou and D. J Marsh, " Robust Nonlinear Autoregressive Moving Average Model Parameter Estimation Using Recurrent Artificial Neural Network", Annals of BioMedical Engineering, Vol. 27, pp 538-547, 1999.
[9] M. H. Hayes, "Staitical Digital Signal processing and Modelling", John Wiley & Sons, Canada, 1996.
[10] Z. P. Liang, F. E. Boada, R. T. Constable, E. M. Haacke, P. C. Lauterbur, and M. R. Smith, "Constrained Reconstruction Methods in MR Imaging", Reviews of MRM, vol. 4, pp.67 - 185, 1992.
[11] E. Hackle and Z. Liang, "Superresolution Reconstruction Through Object Modeling and Estimation", IEEE transactions in A.S.S.P, 37: 592 - 595, 1989.
[12] E. C. Whitman, "The spectral analysis of discrete time series in terms of linear regressive models", Naval Ordinance Labs Rep., NOLTR-070- 109, White Oak, MD, June 23, 1974.
[13] R. Palaniappan, "Towards Optimal Model Oreder Selection for Autoregressive Spectral Analysis of Mental Tasks Using Genetic Algorithm", IJCSNS International Journal of Computer Science and Network Security, Vol. 6 No. 1A, January 2006.
[14] H. Akaike, "Power Spectrum Estimation through Autoregression Model Fitting", Annals of the Institute of Statistical Mathematics, vol. 21, pp. 407-419, 1969.
[15] H. Akaike, "A New Look at the Statistical Model Identification", IEEE Trans. Autom. Control, vol. AC-19, pp. 716-723, 1974.
[16] J. Rissanen, "Modelling by shortest data description", Automatica, vol.14, pp.465-471, 1978.
[17] M.J. Salami, A. R. Najeeb, O. Khalifa, K. Arrifin, "MR Reconsturction with Autoregressive Moving Average", International Conference on Biotechnology Engineering, Kuala Lumpur, pp 676 - 704, May, 2007.

Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007