Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29414


Select areas to restrict search in scientific publication database:
10003400
Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control
Abstract:
With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.
Digital Object Identifier (DOI):

References:

[1] Renewable Energy Policy Network for the 21st Century (REN21), Renewables 2015, Global Status Report, 2015.
[2] M. Erol-Kantarci, H. T. Mouftah, ”Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues”, IEEE Communication Surveys & Tutorials, vol. 17, no. 1, 2015.
[3] A.-H. Mohsenian-Rad, A. Leon-Garcia, Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments, IEEE Transactions on Smart Grid, vol. 1, no. 2, 2010.
[4] M. P. F. Hommelberg, C. J. Warmer, I. G. Kamphuis, J. K. Kok, G. J. Schaeffer, Distributed Control Concepts using Multi-Agent technology and Automatic Markets: an Indispensable Feature of Smart Power Grids, Proceedings of the IEEE Power Engineering Society General Meeting, pp. 7, 2007.
[5] M. Sechilariu, B. Wang, F. Locment, ”Building Integrated Photovoltaic System With Energy Storage and Smart Grid Communication”, IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1607–1618, 2013.
[6] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, P. Haves, ”Model Predictive Control for the Operation of Building Cooling Systems”, IEEE Transactions on Control Systems Technology, vol.20, no.3, pp. 796–803, 2012.
[7] A. Schirrer, O. K¨onig, S. Ghaemi, F. Kupzog, M. Kozek, ”Hierarchical Application of Model-predictive Control for Efficient Integration of Active Buildings into Low Voltage Grids”, Proceedings of the 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES, pp. 6, 2013.
[8] X. Zhang, G. Schildbach, D. Sturzenegger, M. Morari, ”Scenario-Based MPC for Energy-Efficient Building Climate Control under Weather and Occupancy Uncertainty”, Proceedings of European Control Conference, ECC, pp. 1029–1034, 2013.
[9] Y. Ma, J. Matuˇsko, F. Borrelli: Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism, IEEE Transactions on Control Systems Technology, vol. 23, no. 1, pp. 101–116, 2015.
[10] J. Matuˇsko, F. Borrelli, ”Scenario-based approach to stochastic linear predictive control”, Proceedings of the IEEE Conference on Decision and Control, CDC, pp. 5194–5199, 2012.
[11] F. Oldewurtel, A. Parisio, C. N. Jones, M. Morari, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann, K. Wirth, Energy Efficient Building Climate Control using Stochastic Model Predictive Control and Weather Predictions, Proceedings of the American Control Conference, pp. 5100-5105, 2010.
[12] T. ˇ Zakula, P.R. Armstrong, L. Norford, ”Modeling Environment for Model Predictive Control of Buildings”, Energy and Buildings, vol. 85, pp. 549–559, 2014.
[13] M. Vaˇsak, A. Martinˇcevi´c, ”Optimal Control of a Family House Heating System”, Proceedings of the International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO, pp. 907–912, 2013.
[14] A. Martinˇcevi´c, A. Starˇci´c, M. Vaˇsak, ”Parameter Estimation for Low-order Models of Complex Buildings”, Proceedings of the Innovative Smart Grid Technologies Europe, ISGT EUROPE, pp. 6, 2014.
[15] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann, M. Morari, ”Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control”, Energy and Buildings, vol. 45, pp. 15–27, 2012.
[16] J. Drgoˇna, M. Kvasnica, M. Klauˇco, M. Fikar, ”Explicit Stochastic MPC Approach to Building Temperature Control”, Proceedings of IEEE Conference on Decision and Control, CDC, pp. 6440–6445, 2013.
[17] D. Sturzenegger, D. Gyalistras, M. Gwerder, C. Sagerschnig, M. Morari, R. S. Smith, ”Model Predictive Control of a Swiss Office Building”, Proceedings of the 11th REHVA World Congress Clima 2013, 2013.
[18] A. Bejan, A. D. Kraus, Heat Transfer Handbook, New Jersey: John Wiley & Sons, ISBN 0-471-39015-1, 2003.
[19] C. Lu, M. Zheng, W. H. Leong, Verification and Analysis of a TRNSYS Model of a Demonstration House Equipped with a Solar Assisted Ground Coupled Heat Pump System, Proceedings of the International Conference on Consumer Electronics, Communications and Networks, CECNet, pp. 1887-1891, 2011.
[20] W. J. Cole, E. T. Hale, T. F. Edgar, ”Building Energy Model Reduction for Model Predictive Control Using OpenStudio”, American Control Conference, ACC, pp. 449–454, 2013.
[21] ”User Manual IDA Indoor Climate and Energy”, EQUA Simulation AB, 2013.
[22] International Building Performance Simulation Association (IBPSA). (2015, Sep. 8). Building Energy Software Tools Directory. Available: http://www.buildingenergysoftwaretools.com
[23] K. Deng, P. Barooah, P. G. Mehta, S. P. Meyn, ”Building Thermal Model Reduction via Aggregation of States”, Proceedings of the American Control Conference, ACC, pp. 5118-5123, 2010.
[24] American Society of Heating Refrigerating and Air-Conditioning Engineers, ”2009 ASHRAE Handbook, Fundamentals”, 2009.
[25] A. C. Antoulas, ”An Overview of Model Reduction Methods and a New Result”, Proceedings of the IEEE Conference on Decision and Control, CDC, pp. 5357-5361, 2009.
[26] K. Glover, ”All Optimal Hankel-norm Approximations of Linear Multivariable Systems and Their L(infinity)-error Bounds”, International Journal of Control, vol. 39, no. 6, pp. 1115-1193, 1984.
[27] M. G. Safonov, R. Y. Chiang, ”Schur Method for Balanced-truncation Model Reduction”, IEEE Transactions on Automatic Control, vol. 34, no. 7, pp. 729-733, 1989.
[28] S. J. Julier and J. K. Uhlmann, ”Unscented Filtering and Nonlinear Estimation”, Proceedings of the IEEE, vol. 92, no. 3, pp. 401-422, 2004.
[29] M. Maasoumy, B. Moridian, M. Razmara, M. Shahbakhti, A. Sangiovanni-Vincentelli, ”Online simultaneous state estimation and parameter adaptation for building predictive control”, ASME Conference Proceedings, vol. 2013, 2013.
[30] J. Jang, ”System Design and House Dynamic Signature Identification for Intelligent Energy Management in Residential Buildings”, Ph.D. dissertation, Dept. Mech. Eng., Univ. California at Berkeley, Berkeley, CA, USA, 2008.
[31] BSI, EN 15251:2007, Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics.
[32] S. Goyal, H. A. Ingley, P. Barooah, ”Zone-Level Control Algorithms Based on Occupancy Information for Energy Efficient Buildings”, Proceedings of the American Control Conference, ACC, pp. 3063–3068, 2012.
[33] M. Gulin, M. Vaˇsak, M. Baoti´c, ”Analysis of Microgrid Power Flow Optimization with Consideration of Residual Storages State”, Proceedings of the 2015 European Control Conference, ECC, pp. 3131–3136, 2015.
[34] W. S. Parker, ”Predicting Weather and Climate: Uncertainty, Ensembles and Probability”, Studies in History and Philosophy of Modern Physics vol. 41, no. 3, pp. 263–272, 2010.
[35] R. H. Lasseter, Smart Distribution: Coupled Microgrids, Proceedings of the IEEE, vol. 99, no. 6, pp. 1074-1082, 2011.
[36] A. Parisio, E. Rikos, L. Glielmo, ”A Model Predictive Control Approach to Microgrid Operation Optimization”, IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1813-1827, 2014.
[37] P. O. Kriett, M. Salani, ”Optimal control of a residential microgrid”, Energy, vol. 42, no. 1, pp. 321–330, 2012.
[38] G. Comodi, A. Giantomassi, M. Severini, S. Squartini, F. Ferracuti, A. Fonti, D. Nardi Cesarini, M. Morodo, F. Polonara: Multi-apartment Residential Microgrid with Electrical and Thermal Storage Devices: Experimental Analysis and Simulation of Energy Management Strategies, Applied Energy, vol. 137, pp. 854–866, 2015.
[39] F. Blaabjerg, D. M. Ionel, ”Renewable Energy Devices and Systems State-of-the- Art Technology, Research and Development, Challenges and Future Trends”, Electric Power Components and Systems, vol. 43, no. 12, pp. 1319–1328, 2015.
[40] M. Gulin, M. Vaˇsak, T. Pavlovi´c, Dynamical Behaviour Analysis of a DC Microgrid in Distributed and Centralized Voltage Control Configurations, Proceedings of the 23rd International Symposium on Industrial Electronics, ISIE, pp. 2365-2370, 2014.
[41] M. Gulin, M. Vaˇsak, N. Peri´c, ”Dynamical optimal positioning of a photovoltaic panel in all weather conditions”, Applied Energy, vol. 108, pp. 429–438, 2013.
[42] M. Gulin, M. Vaˇsak, T. Pavlovi´c, ”Model Identification of a Photovoltaic System for a DC Microgrid Simulation”, Proceedings of the 16th International Power Electronics and Motion Control Conference and Exposition, PEMC, pp. 501–506, 2014.
[43] M. Gulin, J. Matuˇsko, M. Vaˇsak, ”Stochastic Model Predictive Control for Optimal Economic Operation of a Residential DC Microgrid”, Proceedings of the 2015 IEEE International Conference on Industrial Technology, ICIT, pp. 505–510, 2015.
[44] M. Gulin, M. Vaˇsak, G. Banjac, T. Tomiˇsa, ”Load Forecast of a University Building for Application in Microgrid Power Flow Optimization”, Proceedings of the IEEE International Energy Conference, EnergyCon, pp. 1284–1288, 2014.
[45] L. Y. Pao, K. E. Johnson, ”Control of Wind Turbines: Approaches, Challenges, and Recent Developments”, IEEE Control Systems Magazine, vol. 31, no. 2, pp. 44–62, 2011.
[46] S. Widergren, C. Marinovici, T. Berliner, A. Graves, ”Real-time Pricing Demand Response in Operations”, Power and Energy Society General Meeting, pp. 5, 2012.
[47] C. Eksin, H. Delic, A. Ribeiro, ”Real-Time Pricing with Uncertain and Heterogeneous Consumer Preferences”, Proceedings of the American Control Conference, ACC, pp. 5692–5699, 2015.
[48] R. Scattolini, ”Architectures for distributed and hierarchical Model Predictive Control A review”, Journal of Process Control, vol. 19, no. 5, pp. 723–731, 2009.
[49] EPEX SPOT. (2015, Sep. 8). European Power Exchange Electricity Index. Available: http://www.epexspot.com
[50] M. Herceg, M. Kvasnica, C.N. Jones, M. Morari, ”Multi-Parametric Toolbox 3.0”, Proceedings of the European Control Conference, ECC, pp. 502–510, 2013.
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007