Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29640


Select areas to restrict search in scientific publication database:
10007127
Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall
Abstract:
Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.
Digital Object Identifier (DOI):

References:

[1] SUS Chol et al. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 231:99-106, 1995.
[2] Yimin Xuan and Qiang Li. Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat transfer, 125(1):151155, 2003.
[3] Benjamin Gebhart, Yogesh Jaluria, Roop L Mahajan, and Bahgat Sammakia. Buoyancy-induced flows and transport, 1988.
[4] PN Shankar and MD Deshpande. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics, 32(1):93136, 2000.
[5] Raj Kamal Tiwari and Manab Kumar Das. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50(9):20022018, 2007.
[6] Eiyad Abu-Nada and Ali J Chamkha. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. European Journal of Mechanics-B/Fluids, 29(6):472482, 2010.
[7] Rahman, M. M., et al. Heat transfer enhancement of nanofluids in a lid-driven square enclosure. Numerical Heat Transfer, Part A: Applications 62.12 (2012): 973-991.
[8] Hossein Khorasanizadeh,Majid Nikfar, and Jafar Amani. Entropy generation of cuwater nanofluid mixed convection in a cavity. European Journal of Mechanics-B/Fluids, 37:143152, 2013.
[9] Hakan F Oztop, Changzheng Sun, and Bo Yu. Conjugatemixed convection heat transfer in a lid-driven enclosure with thick bottom wall. International Communications in Heat and Mass Transfer, 35(6):779785, 2008.
[10] Ali J Chamkha and Muneer A Ismael. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. International Journal of Thermal Sciences, 67:135151, 2013.
[11] RK Nayak, S Bhattacharyya, and I Pop. Numerical study on mixed convection and entropy generation of cuwater nanofluid in a differentially heated skewed enclosure. International Journal of Heat and Mass Transfer, 85:620634, 2015.
[12] Abdalla Al-Amiri, Khalil Khanafer, Joseph Bull, and Ioan Pop. Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity. International Journal of Heat and Mass Transfer, 50(9):17711780, 2007.
[13] Malvandi, A., and D. D. Ganji. Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field. International Journal of Thermal Sciences 84 (2014): 196-206.
[14] Ali J Chamkha and Eiyad Abu-Nada. Mixed convection flow in single-and double-lid driven square cavities filled with wateral 2 o 3 nanofluid: effect of viscosity models. European Journal of Mechanics-B/Fluids, 36:8296, 2012.
[15] HC Brinkman. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 20(4):571571, 1952.
[16] Adrian Bejan. A study of entropy generation in fundamental convective heat transfer. ASME J. Heat Transfer, 101(4):718725, 1979.
[17] Adrian Bejan and J Kestin. Entropy generation through heat and fluid flow. Journal of Applied Mechanics, 50:475, 1983.
[18] Clive Fletcher. Computational techniques for fluid dynamics 2: Specific techniques for different flow categories. Springer Science & Business Media, 2012.
[19] T Hayase, JAC Humphrey, and R Greif. A consistently formulated quick scheme for fast and stable convergence using finite-volume iterative calculation procedures. Journal of Computational Physics, 98(1):108118, 1992.
Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007