Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10000566
Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility
Abstract:
A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.
Digital Article Identifier (DAI):

References:

[1] H. Schmidt, F. Heuer, J. Drumm, Z. Klezl, L. Claes, and H.-J. Wilke, “Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment.” Clinical biomechanics (Bristol, Avon), vol. 22, no. 4, pp. 377–84, May 2007. (Online). Available: http://www.ncbi.nlm.nih.gov/ pubmed/17204355
[2] H. Schmidt, F. Heuer, L. Claes, and H.-J. Wilke, “The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis.” Clinical biomechanics (Bristol, Avon), vol. 23, no. 3, pp. 270–8, Mar. 2008. (Online). Available: http://www.ncbi.nlm.nih.gov/pubmed/17997207
[3] H. Schmidt, F. Galbusera, A. Rohlmann, T. Zander, and H.-J. Wilke, “Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis,” European Spine Journal, vol. 21, no. 5, pp. 663–674, 2012. (Online). Available: http://dx.doi.org/10.1007/ s00586-010-1382-1
[4] D. S. Shin, K. Lee, and D. Kim, “Biomechanical study of lumbar spine with dynamic stabilization device using finite element method,” Comput. Aided Des., vol. 39, no. 7, pp. 559–567, Jul. 2007. (Online). Available: http://dx.doi.org/10.1016/j.cad.2007.03.005
[5] Y. Alapan, C. Demir, T. Kaner, R. Guclu, and S. Inceo˘glu, “Instantaneous center of rotation behavior of the lumbar spine with ligament failure.” Journal of neurosurgery. Spine, vol. 18, no. 6, pp. 617–26, Jun. 2013. (Online). Available: http://www.ncbi.nlm.nih.gov/ pubmed/23600587
[6] T. Zander, A. Rohlmann, and G. Bergmann, “Influence of ligament stiffness on the mechanical behavior of a functional spinal unit.” Journal of biomechanics, vol. 37, no. 7, pp. 1107–11, Jul. 2004. (Online). Available: http://www.ncbi.nlm.nih.gov/pubmed/15165881
[7] B. Weisse, a. K. Aiyangar, C. Affolter, R. Gander, G. P. Terrasi, and H. Ploeg, “Determination of the translational and rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model.” Journal of the mechanical behavior of biomedical materials, vol. 13, pp. 45–61, Sep. 2012. (Online). Available: http://www.ncbi.nlm.nih.gov/ pubmed/22842275
[8] T. Yoshimura, K. Nakai, and G. Tamaoki, “Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.” Industrial health, vol. 43, no. 3, pp. 441–7, Jul. 2005. (Online). Available: http://www.ncbi.nlm.nih.gov/pubmed/16100921
[9] M. Christophy, N. Faruk Senan, J. Lotz, and O. O’Reilly, “A musculoskeletal model for the lumbar spine,” Biomechanics and Modeling in Mechanobiology, vol. 11, no. 1-2, pp. 19–34, 2012. (Online). Available: http: //dx.doi.org/10.1007/s10237-011-0290-6
[10] K. T. Huynh, I. Gibson, B. N. Jagdish, and W. F. Lu, “Development and validation of a discretised multi-body spine model in LifeMOD for biodynamic behaviour simulation.” Computer methods in biomechanics and biomedical engineering, vol. 0, no. June 2013, pp. 37–41, Apr. 2013. (Online). Available: http://www.ncbi. nlm.nih.gov/pubmed/23621475
[11] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hybrid simulation of deformable solids,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2007, pp. 81–90.
[12] S.-H. Lee, E. Sifakis, and D. Terzopoulos, “Comprehensive biomechanical modeling and simulation of the upper body,” ACM Trans. Graph., vol. 28, no. 4, pp. 99:1–99:17, Sep. 2009. (Online). Available: http://doi.acm.org/10.1145/1559755.1559756
[13] F. Faure, B. Gilles, G. Bousquet, and D. K. Pai, “Sparse meshless models of complex deformable solids,” ACM Trans. Graph., vol. 30, no. 4, pp. 73:1–73:10, Jul. 2011. (Online). Available: http://doi.acm.org/10.1145/2010324. 1964968
[14] I. Stavness, J. E. Lloyd, Y. Payan, and S. Fels, “Coupled hard–soft tissue simulation with contact and constraints applied to jaw–tongue–hyoid dynamics,” International Journal for Numerical Methods in Biomedical Engineering, vol. 27, no. 3, pp. 367–390, 2011.
[15] M. Dreischarf, T. Zander, A. Shirazi-Adl, C. Puttlitz, C. Adam, C. Chen, V. Goel, A. Kiapour, Y. Kim, K. Labus et al., “Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together,” Journal of biomechanics, vol. 47, no. 8, pp. 1757–1766, 2014.
[16] N. Mitsuhashi, K. Fujieda, T. Tamura, S. Kawamoto, T. Takagi, and K. Okubo, “Bodyparts3d: 3d structure database for anatomical concepts,” Nucleic Acids Research, vol. 37, no. suppl 1, pp. D782–D785, 2009.
[17] S. J. Ferguson, K. Ito, and L.-P. Nolte, “Fluid flow and convective transport of solutes within the intervertebral disc,” Journal of Biomechanics, vol. 37, no. 2, pp. 213 – 221, 2004, spinal Biomechanics. (Online). Available: http://www.sciencedirect.com/science/article/ pii/S0021929003002501
[18] A. Malandrino, J. A. Planell, and D. Lacroix, “Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation,” Journal of Biomechanics, vol. 42, no. 16, pp. 2780 – 2788, 2009. (Online). Available: http://www.sciencedirect.com/ science/article/pii/S0021929009004679
[19] A. Shirazi-Adl, A. M. AHMED, and S. C. SHRIVASTAVA, “Mechanical response of a lumbar motion segment in axial torque alone and combined with compression,” Spine, vol. 11, no. 9, pp. 914–927, 1986.
[20] J. Chazal, a. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, and G. Vanneuville, “Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction.” Journal of biomechanics, vol. 18, no. 3, pp. 167–76, Jan. 1985. (Online). Available: http://www.ncbi.nlm.nih.gov/pubmed/3997901
[21] Y. Masharawi, B. Rothschild, G. Dar, S. Peleg, D. Robinson, E. Been, and I. Hershkovitz, “Facet Orientation in the Thoracolumbar Spine: Three-dimensional Anatomic and Biomechanical Analysis,” Spine, vol. 29, no. 16, 2004. (Online). Available: http://journals.lww.com/spinejournal/ Fulltext/2004/08150/Facet\ Orientation\ in\ the\ Thoracolumbar\ Spine\ .9.aspx
[22] M. Nordin and V. H. V. H. Frankel, Basic biomechanics of the musculoskeletal system. Philadelphia (Pa.): Lippincott Williams & Wilkins, 2001. (Online). Available: http://opac.inria.fr/record=b1133407
[23] A. De Luca, “Feedforward/feedback laws for the control of flexible robots,” in Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on, vol. 1, 2000, pp. 233–240 vol.1.
[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. New York, NY, USA: Cambridge University Press, 2007.
[25] W. M. Park, K. Kim, and Y. H. Kim, “Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine,” Computers in biology and medicine, vol. 43, no. 9, pp. 1234–1240, 2013.
[26] U. M. Ayturk and C. M. Puttlitz, “Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine,” Computer methods in biomechanics and biomedical engineering, vol. 14, no. 8, pp. 695–705, 2011.
[27] C.-L. Liu, Z.-C. Zhong, H.-W. Hsu, S.-L. Shih, S.-T. Wang, C. Hung, and C.-S. Chen, “Effect of the cord pretension of the dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis,” European Spine Journal, vol. 20, no. 11, pp. 1850–1858, 2011.
[28] J. P. Little, H. De Visser, M. J. Pearcy, and C. J. Adam, “Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?—a modeling study,” Computer methods in biomechanics and biomedical engineering, vol. 11, no. 1, pp. 95–103, 2008.
[29] A. Shirazi-Adl, “Biomechanics of the lumbar spine in sagittal/lateral moments,” Spine, vol. 19, no. 21, pp. 2407–2414, 1994.
[30] T. Zander, A. Rohlmann, and G. Bergmann, “Influence of different artificial disc kinematics on spine biomechanics,” Clinical biomechanics, vol. 24, no. 2, pp. 135–142, 2009.
[31] A. Kiapour, D. Ambati, R. W. Hoy, and V. K. Goel, “Effect of graded facetectomy on biomechanics of dynesys dynamic stabilization system,” Spine, vol. 37, no. 10, pp. E581–E589, 2012.
[32] M. J. PEARCY and N. BOGDUK, “Instantaneous Axes of Rotation of the Lumbar Intervertebral Joints,” Spine, vol. 13, no. 9, 1988. (Online). Available: http://journals.lww.com/spinejournal/Fulltext/ 1988/09000/Instantaneous\ Axes\ of\ Rotation\ of\ the\ Lumbar.11.aspx
[33] M.-A. Rousseau, D. S. Bradford, T. M. Hadi, K. L. Pedersen, and J. C. Lotz, “The instant axis of rotation influences facet forces at L5/S1 during flexion/extension and lateral bending.” European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, vol. 15, no. 3, pp. 299–307, Mar. 2006. (Online). Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=3489304\&tool=pmcentrez\&rendertype=abstract
[34] P. Bifulco, M. Cesarelli, T. Cerciello, and M. Romano, “A continuous description of intervertebral motion by means of spline interpolation of kinematic data extracted by videofluoroscopy.” Journal of biomechanics, vol. 45, no. 4, pp. 634–41, Feb. 2012. (Online). Available: http://www.ncbi.nlm.nih.gov/pubmed/22277152
[35] Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I. and Cotin S., “SOFA: A Multi-Model Framework for Interactive Physical Simulation,” Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, vol. 11, pp. 283–321, 2012.
[36] A. Shirazi-Adl and M. Parnianpour, “Load-bearing and stress analysis of the human spine under a novel wrapping compression loading,” Clinical Biomechanics, vol. 15, no. 10, pp. 718–725, 2000.

Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007