Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29381


Select areas to restrict search in scientific publication database:
10008122
Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows
Abstract:
A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.
Digital Object Identifier (DOI):

References:

[1] E. Audusse et al., “A fast finite volume solver for multilayered shallow water flows with mass exchange,” In: Journal of Computational Physics, vol. 272, 2014, pp. 23-45.
[2] R. A. Bagnold, “An approach to the sediment transport problem from general physics,” In: U.S. Geological Survey Professional Paper, 1 (1966).
[3] F. Benkhaldoun, S. Sari, and M. Seaid, “Projection finite volume method for shallow water flows,” In: Mathematics and Computers in Simulation, vol. 118, 2015, pp. 87-101.
[4] F. Benkhaldoun et al., “Comparison of unstructured finite-volume morphodynamic models in contracting channel flows,” In: Mathematics and Computers in Simulation, vol. 81, 2011, pp. 2081-2097.
[5] R. Briganti et al. , “An efficient and flexible solver for the simulation of morphodynamics of fast evolving flows on coarse sediments beaches,” In: International Journal for Numerical Methods in Fluids, vol. 69, 2011, pp. 859-877.
[6] W. R. Brownlie, “Prediction of flow depth and sediment discharge in open channels,” In: Report Number KH-R-43A Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, 1981.
[7] Z. Cao and P. Carling, “Mathematical modelling of alluvial rivers: reality and myth. Part I: General overview,” In: Water Maritime Engineering, vol. 154, 2002, pp. 207-220.
[8] Z. Cao et al., “Computational dam-break hydraulics over erodible sediment bed,” In: Journal of Hydraulic Engineering, vol. 67, 2004, pp. 149-152.
[9] M. J. Castro Diaz, E. D. Fernadez-Nieto, and A. M. Ferreiro, “Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods,” In: Computers and Fluids, vol. 37, 2008, pp. 299-316.
[10] F. Engelund and J. Fredsoe, “A sediment transport model for straight alluvial channels,” In: Nordic Hydrology, vol. 7, 1976, pp. 293-306.
[11] A. J. Grass, “Sediment Transport by Waves and Currents,” In: SERC London Cent. Mar. Technol., FL29, 1981.
[12] M. Guan, N. G. Wright, and P. G. Sleigh, “Multimode morphodynamic model for sediment-laden flows and geomorphic impacts,” In: Journal of Hydraulic Engineering, vol. 141, 2015.
[13] J. Guo and P. Y. Julien, “Turbulent velocity profiles in sediment-laden flows,” In: Journal of Hydraulic Research, vol. 39, 2001, pp. 11-23.
[14] S. Huang et al. , “Vertical distribution of sediment concentration,” In: Journal of Zhejiang University SCIENCE, vol. 9, 2008, pp. 1560-1566.
[15] J. Hudson and P. K. Sweby, “Formations for numerically approximating hyperbolic systems governing sediment transport,” In: Journal of Scientific Computing, vol. 19, 2003, pp. 225-252.
[16] J. Hudson and et al., “Numerical approaches for 1D morphodynamic modelling,” In: Coastal Eng, vol. 52, 2005, pp. 691-707.
[17] J. Hudson and et al., “Numerical modeling of sediment transport applied to coastal morphodynamics,” In: Applied Numerical Mathematics, vol. 104, 2016, pp. 30-46.
[18] X. Lui, “New Near-Wall Treatment for Suspended Sediment Transport Simulations with High Reynolds Number Turbulence Models,” In: Journal of Hydraulic Engineering, vol. 140, 2014, pp. 333-339.
[19] X. Liu and A. Beljadid, “A coupled numerical model for water flow, sediment transport and bed erosion,” In: Computers and Fluids, vol. 154, 2017, pp. 273-284.
[20] E. Meyer-Peter and R. Muller, “Formulas for Bed-load Transport,” In: Report on 2nd meeting on international association on hydraulic structures research, 1948, pp. 39-64.
[21] J. Murillo and P. Garcia-Navarro, “An Exner-based coupled model for two-dimensional transient flow over erodible bed,” In: Journal of Computational Physics, vol. 229, 2010, pp. 8704-8732.
[22] G. Rosatti and L. Fraccarollo, “A well-balanced approach for flows over mobile-bed with high sediment transport,” In: Journal of Computational Physics, vol. 220, 2006, pp. 312-338.
[23] W. W. Rubey, “Settling velocity of gravel, sand, and silt particles,” In: American Journal of Science, vol. 148, 1933, pp. 325-338.
[24] S. Soares-Frazao and Y. Zech, “HLLC scheme with novel wave-speed estimators appropriate for two dimensional shallow-water flow on erodible bed,” In: International Journal for Numerical Methods in Fluids, vol. 66, 2011, pp. 1019-1036.
[25] J. Thompson et al., Event-based total suspended sediment particle size distribution model,” In: Journal of Hydrology, vol. 536, 2016, pp. 236-246.
[26] L. C. Van Rijn, “Sediment Pick up Functions,” In: Journal of Hydraulic Engineering, vol. 110, 1984, pp. 1494-1502.
[27] L. C. Van Rijn, “Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport,” In: Journal of Hydraulic Engineering, vol. 113, 2007, pp. 649-667.
[28] V. A. Vanoni and G. N. Nomicos, “Resistance Properties of Sediment-Laden Streams,” In: Transactions of the American Society of Civil Engineers, vol. 125, 1960, pp. 1140-1167.
[29] W. Wu and S. S. Wang, “Formulas for sediment porosity and settling velocity,” In: Journal of Hydraulic Engineering, vol. 132, 2006, pp. 858-862.
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007