Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29534


Select areas to restrict search in scientific publication database:
1926
Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field
Abstract:
An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter.
Digital Object Identifier (DOI):

References:

[1] G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Roy. Soc. Lond., vol.A 219, pp.186-203, 1953.
[2] G. I. Taylor, The dispersion of matter in turbulent flow through a pipe, Proc. Roy. Soc. Lond., vol.A 223, pp.446-468, 1954a.
[3] G. I. Taylor, Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion, Proc. Roy. Soc. Lond., vol.A 225, pp. 473-477, 1954b.
[4] R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proc. Roy. Soc. Lond., vol.A 235, pp.67-77, 1956.
[5] B. K. N. Dutta, N. C. Roy and A. S. Gupta, Dispersion of a solute in a non-Newtonian fluid with simultaneous chemical reaction, Mathematica- Mechanica fasc., vol.2, pp.78-82, 1974.
[6] J. B. Shukla, R. S. Parihar and B. R. P. Rao, Dispersion in non-Newtonian fluids: Effects of chemical reaction, Rheologica Acta, vol.18, pp.740-748, 1979.
[7] P. Chandra and R. P. Agarwal, Dispersion in simple microfluid flows, International Journal of Engineering Science, vol.21, pp.431-442,1983.
[8] D. Philip, and P. Chandra, Effects of heterogeneous and homogeneous reactions on the dispersion of a solute in simple microfluid, Indian J. Pure Appl. Math., vol.24, pp.551-561, 1993.
[9] V. M. Soundalgekar and P. Chaturani, Effects of couple-stresses on the dispersion of a soluble matter in a pipe flow of blood, Rheologica Acta, vol.19, pp.710-715, 1980.
[10] P. S. Gupta and A. S. Gupta, Effect of homogeneous and heterogeneous reactions on the dispersion of a solute in the laminar flow between two plates, Proc. Roy. Soc. Lond., vol.A 330, pp.59-63, 1972.
[11] V. V. Ramana Rao and D. Padma, Homogeneous and heterogeneous reaction on the dispersion of a solute in MHD Couette flow, Curr. Sci., vol.44, pp.803-804, 1975.
[12] V. V. Ramana Rao and D. Padma, Homogeneous and heterogeneous reaction on the dispersion of a solute in MHD Couette flow II, Curr. Sci., vol.46, pp.42-43, 1977.
[13] D. Padma and V. V. Ramana Rao, Effect of Homogeneous and heterogeneous reaction on the dispersion of a solute in laminar flow between two parallel porous plates, Indian Journal of Technology, vol.14, pp.410-412, 1976.
[14] A. H. Shapiro, M. Y. Jaffrin and S. L.Weinberg, Peristaltic pumping with with long wavelengths at low Reynold number, J. Fluid Mech., vol.37, pp.799-825, 1969.
[15] Y. C. Fung, and C. S. Yih, Peristaltic transport, J. Appl. Mech. Trans. ASME, vol.5, pp.669-675, 1968.
[16] J. C. Misra and S. K. Pandey, Peristaltic transport in a tapered tube, Mathl. Comput. Modelling, vol.22, pp.137-151, 1995.
[17] J. C. Misra and S. K. Pandey, Peristaltic flow of a multilayered powerlaw fluid through a cylindrical tube, International Journal of Engineering Science, vol.39, pp.387-402, 2001.
[18] M. Mishra and A. R. Rao, Peristaltic transport of a power law fluid in a porous tube, J. Non-Newtonian Fluid Mech., vol.121, pp.163-174, 2004.
[19] G. Radhakrishnamacharya, Long wavelength approximation to peristaltic motion of a power law fluid, Rheologica Acta, vol.21, pp.30-35, 1982.
[20] Kh.S. Mekheimer, Peristaltic Flow of a Magneto-Micropolar Fluid: Effect of Induced Magnetic Field, Journal of Applied Mathematics, Article Id 570825, 23 pages, 2008.
[21] Tasawar Hayat, Masood Khan, Saleem Ashgar and A. M. Siddiqui, A Mathematical Model of Peristalsis in Tubes through a Porous Medium, Journal of Porous Media, vol.9, pp.55-67, 2006.
[22] J. C Misra, S. Maiti, and G.C. Shit, Peristaltic Transport of a Physiological Fluid in an Asymmetric Porous Channel in the Presence of an External Magnetic Field, Journal of Mechanics in Medicine and Biology, vol.8, pp.507-525, 2008.
[23] A. Ramachandra Rao and Manoranjan Mishra, Peristaltic transport of a power-law fluid in a porous tube, Journal of Non-Newtonian Fluid Mechanics, vol.121, pp.163-174, 2004.
[24] V.K. Stokes, Couple Stress Fluid, Physics in Fluids, vol.9, pp.1709-1715. 1966.
[25] S. Islam and C. Y. Zhou, Exact solutions for two dimensional flows of couple stress fluids, Z. angew. Math. Phys., vol.58, pp.1035-1048, 2007.
[26] L. M. Srivastava, Peristaltic transport of a couple-stress fluid, Rheologica Acta, vol.25, pp.638-641, 1986.
[27] Kh.S. Mekheimer and Y. Abd elmaboud, Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope, Physica A., vol.387, pp.2403-2415, 2008.
[28] A. M. Sobh, Interaction of Couple Stresses and Slip Flow on Peristaltic Transport in Uniform and Nonuniform Channels, Turkish J. Eng. Env. Sci., vol.32, pp.117-123, 2008.
Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007