Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29404

Select areas to restrict search in scientific publication database:
Effects of Position and Shape of Atomic Defects on the Band Gap of Graphene Nano Ribbon Superlattices
In this work, we study the behavior of introducing atomic size vacancy in a graphene nanoribbon superlattice. Our investigations are based on the density functional theory (DFT) with the Local Density Approximation in Atomistix Toolkit (ATK). We show that, in addition to its shape, the position of vacancy has a major impact on the electrical properties of a graphene nanoribbon superlattice. We show that the band gap of an armchair graphene nanoribbon may be tuned by introducing an appropriate periodic pattern of vacancies. The band gap changes in a zig-zag manner similar to the variation of band gap of a graphene nanoribbon by changing its width.
Digital Object Identifier (DOI):


[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” in Science, 306, 2004, pp. 666-669.
[2] P. G. Silvestrov and K. B. Efetov, “Quantum dots in graphene,” in Phys. Rev. Lett. 98, 2007, pp. 016802.
[3] A. DeMartino, L. Dell’Anna, and R. Egger, “Magnetic Confinement of Massless Dirac Fermions in Graphene,” in Phys. Rev. Lett. 98, 2007, pp. 066802.
[4] H. Y. Chen, V. Apalkov, and T. Chakraborty, “Fock-Darwin States of Dirac Electrons in Graphene-Based Artificial Atoms,” in Phys. Rev. Lett. 98, 2007, pp. 186803.
[5] M. I. Katsnelson, K. S. Novoselov, A. K. Geim, “Klein Tunneling in Graphene,” in Nature Physics 2, 2006, pp. 620 – 625.
[6] D. Unluer, F. Tseng, A. Ghosh, M. Stan, “Monolithically patterned wide-narrow-wide all-graphene devices,” in Nanotechnology, IEEE Transactions on, 10, 2011, pp. 931- 939.
[7] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, “Room- Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors,” in Physical Review Letters, 100, 2008, pp. 206803.
[8] Jingwei Bai, Yu Huang, “Fabrication and electrical properties of graphene nanoribbons,” in Materials Science and Engineering R 70, 2010, pp. 341–353.
[9] Yun-Sok Shin, Jong Yeog Son, Moon-Ho Jo, Young-Han Shin, Hyun Myung Jang, “High-Mobility Graphene Nanoribbons Prepared Using Polystyrene Dip-Pen Nanolithography,” in J. Am. Chem. Soc., 133, 2011, pp. 5623–5625.
[10] Timothy H. Vo, Mikhail Shekhirev, Donna A. Kunkel, Martha D. Morton, Eric Berglund, Lingmei Kong, Peter M. Wilson, Peter A. Dowben, Axel Enders, Alexander Sinitskii, “Large-scale solution synthesis of narrow graphene nanoribbons,” in Nature Communications, 5, 2014, pp. 3189.
[11] Kyung Tae Kim, Jae Woong Jung, Won Ho Jo, “Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor,” in Carbon, 63, 2013, pp. 202–209.
[12] B. Biel, X. Blase, F. Triozon, S. Roche, “Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons,” in Physical Review Letters, 102, 2009, pp. 096803.
[13] B. Huang, Q. Yan, G. Zhou, J. Wu, B.L. Gu, W. Duan, F. Liu, “Making a field effect transistor on a single graphene nanoribbon by selective doping,” in Applied Physics Letters, 91, 2007, pp. 253122.
[14] Y.W. Son, M.L. Cohen, S.G. Louie, “Half-metallic graphene nanoribbons,” in Nature, 444, 2006, pp. 347-349.
[15] N. Ferralis, R. Maboudian, C. Carraro, “Evidence of structural strain in epitaxial graphene layers on 6H-SiC (0001),” in Physical Review Letters, 101, 2008, pp. 156801.
[16] M. Teague, A. Lai, J. Velasco, C. Hughes, A. Beyer, M. Bockrath, C. Lau, N.C. Yeh, “Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2,” Nano letters, 9, 2009, pp. 2542-2546.
[17] M. Topsakal, S. Cahangirov, S. Ciraci, “The response of mechanical and electronic properties of graphane to the elastic strain,” in Applied Physics Letters, 96, 2010, 091912.
[18] Y. Gao, P. Hao, “Mechanical properties of monolayer graphene under tensile and compressive loading,” Physica E: Low-dimensional Systems and Nanostructures, 41, 2009, pp. 1561-1566.
[19] M.R. Moslemi, M.H. Sheikhi, K. Saghafi, M.K. Moravej-Farshi, “Electronic properties of a dual-gated GNR-FET under uniaxial tensile strain,” in Microelectronics Reliability, 52, 2012, pp. 2579.
[20] T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen, A.-P. Jauho, and K. Pedersen, “Graphene Antidot Lattices: Designed Defects and Spin Qubits,” in Phys. Rev. Lett. 100, 2008, pp. 136804.
[21] L. Rosales, M. Pacheco, Z. Barticevic, A. León, A. Latge, P. A. Orellana, “Transport properties of antidot superlattices of graphene nanoribbons,” in Phys. Rev. B. 80, 2009, pp. 073402.
[22] Jing-Jing Chen, Han-Chun Wu, Da-Peng Yuab, Zhi-Min Liao, “Magnetic moments in graphene with vacancies,” in Nanoscale, 15, 2014.
[23] Yamada Y, Murota K, Fujita R, Kim J, Watanabe A, Nakamura M, Sato S, Hata K, Ercius P, Ciston J, Song CY, Kim K, Regan W, Gannett W, Zettl A, “Subnanometer vacancy defects introduced on graphene by oxygen,” in J. Am. Chem. Soc., 2014, pp. 2232-5.
[24] G.D. Lee, C.Z. Wang, E. Yoon, N.M. Hwang, D.Y. Kim, K.M. Ho, “Diffusion, Coalescence, and Reconstruction of Vacancy Defects in Graphene Layer,” in Phys. Rev. Lett. 95, 2005, pp. 205501.
[25] H. Zhang, M. Zhao, X. Yang, H. Xia, X. Liu, Y. Xia, “Diffusion and coalescence of vacancies and interstitials in graphite: A first-principles study,” in Diamond and Related Materials, 19, 2010, pp. 1240-1244.
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007