Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29286

Select areas to restrict search in scientific publication database:
Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness
A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.
Digital Object Identifier (DOI):


[1] Yan Ji, Kun Yuan, J.N. Chung, Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel, Int. J. Heat Mass Transfer 49, 2006 1329-1339.
[2] S.G. Kandlikar, S. Joshi, S. Tian, Effect of channel roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes, in: Proceedings of NHTC_01 35th National Heat Transfer Conference, Anaheim, CA, June 2001, pp. 1-10.
[3] G.M. Mala, D. Li, Flow characteristics of water in microtubes, Int. J. Heat Mass Transfer 20 (1999) 142-148.
[4] P.Y. Wu, W.A. Little, Measurement of friction factor for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerator, Cryogenics 23 (1983) 273-277.
[5] P.Y. Wu, W.A. Little, Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators, Cryogenics 24 (1984) 415-420.
[6] S. B. Choi, R. F. Barron, and R. O. Warrington, Fluid Flow and Heat Transfer in Microtubes,
[7] M. Usami, T. Fujimoto, S. Kato, Mass-flow reduction of rarefied flow roughness of a slit surface, Trans. Jpn. Soc. Mech. Eng., B 54 (1988) 1042-1050.
[8] H. Sun, M. Faghri, Effect of surface roughness on nitrogen flow in a icrochannel using the direct simulation Monte Carlo method, umer. Heat Transfer Part A 43 (2003) 1-8.
[9] G.E. Karniadakis, A. Beskok, Micro Flows, Fundamental and imulation, Springer, Berlin, 2002.
[10] E. Turner, H. Sun, M. Faghri, O.J. Gregory, Effect of surface roughness on gaseous flow through micro channels, 2000 IMECE, TD 366 (2) (2000) 291-298.
[11] W. Sugiyama, T. Sawada, K. Nakamori, Rarefied gas flow between two flat plates with two dimensional surface roughness, Vacuum 47 1996) 791-794.
[12] Sugiyama, T. Sawada, M. Yabuki, Y. Chiba, Effects of surface roughness on gas flow conductance in channels estimated by conical roughness model, Appl. Surf. Sci. 169-170 (2001) 787-791.
[13] R. Valses, J. Miana, Luis Pelegay, Luis Nunez, Thomas Putz. Numerical investigation of the influence of roughness on the laminar incompressible fluid flow through annular microchannels, Int. J. Heat Mass Transfer 50 (2007) 1865-1878.
[14] Yan Ji, Kun Yuan, J.N. Chung, Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel, Int. J. Heat Mass Transfer 49 (2006) 1329-1339.
[15] Choi, Hyung-il, Lee, Dong-ho and Lee, Dohyung , (2005) 'Complex Microscale Flow Simulations Using Langmuir Slip Condition', Numerical Heat Transfer, Part A: Applications, 48:5, 407 - 425
[16] A. Beskok, G.E. Karniadakis, A model for flows in channels, pipes and ducts at micro and nanoscales, Microscale Thermophys. Eng. 3 (1999) 43-77.
[17] Porodnov BT, Suetin PE, Borisov SF, Akinshin VD (1974) J Fluid Mech 64:417-437
[18] Arkilic EB, Schmidt MA, Breuer KS (1997) J Microelectromech Syst 6(2):167-178
[19] Maurer J, Tabeling P, Joseph P, Willaime H (2003) Phys Fluid 15:2613- 2621
[20] Colin S, Lalonde P, Caen R (2004) Heat Transfer Eng 25(3):23-30
[21] T. Ewart, P.Perrier, I.Graur, J.Gilbert, "Tangential momemtum accommodation in microtube", Microfluid nanofluid, (2007) 3:689-695
[22] A. Beskok, G.E. Karniadakis, A model for flows in channels, pipes and ducts at micro and nanoscales, Microscale Thermophys. Eng. 3 (1999) 43-77.
[23] J.C. Shih, C.M. Ho, J.Q. Liu, Y.C. Tai, Monatomic and polyatomic gas flow through uniform microchannels, Microelectromechanical Syst. 59 (1996) 197-203.
[24] Z.Y. Guo, Z.X. Li, Size effect on microscale single-phase flow and heat transfer, Int. J. Heat Mass Transfer 46 (2003) 149-159.
[25] S.E. Turner, Experimental investigation of gas flow in microchannels, ASME J. Heat Transfer 126 (2004) 753-762.
Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007