Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
2190
Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.

References:

[1] T. Kohonen, "Self-organized formation of topologically correct feature maps", Biological Cybernetics, vol. 43, pp. 59-69, 1982
[2] G. Deboeck, T. Kohonen, Visual Explorations in Finance with Selforganizing Maps. London: Springer-Verlag, 1998
[3] M. Gross, F. Seibert, "Visualization of multi-dimensional image data sets using a neural network", The Visual Computer, International Journal of Computer Graphics, vol. 10, pp. 145-159, 1993
[4] M. Gross, Visual Computing: The Integration of Computer Graphics, Visual Perception and Imaging. Berlin: Springer-Verlag, 1994
[5] J. Vesanto, "SOM-based data visualization methods", Journal of Intelligent Data Analysis, vol. 3, pp. 111-126, 1999
[6] J. Vesanto, E. Alhoniemi, "Clustering of the self-organizing map", IEEE Transactions on Neural Networks, vol. 11, pp. 586-600, 2000
[7] H. Ritter, "Self-organizing maps on non-Euclidean spaces", in Kohonen Maps, E. Oja and S. Kaski, Amsterdam: Elsevier Science B. V., 1999, pp. 97-109
[8] A. Sangole, G. K. Knopf, "Representing high-dimensional data sets as close surfaces", Journal of Information Visualization, vol. 1, pp. 111- 119, 2002
[9] A. P. Sangole, "Data-driven Modeling using Spherical Self-organizing Feature Maps", Ph.D. dissertation, Dept. of Mech. and Mat. Eng., The University of Western Ontario, London, ON, Canada, 2003
[10] A. Sangole, G. K. Knopf, "Geometric representations for highdimensional data using a spherical SOFM", International Journal of Smart Engineering System Design, vol. 5, pp. 11-20, 2003
[11] A. Sangole, G. K. Knopf, "Visualization of random ordered numeric data sets using self-organized feature maps", Computers and Graphics, vol. 27, pp. 963-976, 2003
[12] K. Haese, "Self-organizing feature maps with self-adjusting learning parameters", IEEE Transactions on Neural Networks, vol. 9, pp. 1270- 1278, 1998
[13] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems. SIAM, 1997, pp. 186-193
[14] M. Hénon, "A two-dimensional map with strange attractor", Communications in Mathematical Physics, vol. 50, pp. 69-77, 1976
[15] K. Ikeda, "Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system", Optics Communications, vol. 30, p. 257, 1979
Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007