Scholarly Research Excellence

Digital Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29022


Select areas to restrict search in scientific publication database:
10009546
Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.
Digital Object Identifier (DOI):

References:

[1] Breast Cancer Wisconsin (Diagnostic) Data Set. http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).
[2] http://mlr.cs.umass.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29.
[3] Hong Guo and Asoke K. Nandi. Breast cancer diagnosis using genetic programming generated feature. Pattern Recognition, 39(5):980-987, 2006.
[4] J. Han and N. Cercone. ule Viz: a model for visualizing knowledge discovery process. In KDD, pages 244-253, 2000.
[5] Seral Sahan, Kamal polat, Halife Kodaz and Salih Gunes. Hybrid method based on fuzz-immune system and k-nn algorithm for Breast Cancer Diagnosis, 37(2007) 415-423.
[6] J. R. Quinlan, Improved use of continuous attributes in C4.5, J. Artif. Intell. Res 4(1996) 77-90.
[7] H. J. Hamilton, N. Shan, N.Cerone. RIAC: a rule induction algorithm based on approximate classification, Technical Report CS 96-06, University of regina, 1996.
[8] B. Ster, A. Dobinka, Neural networks in medical diagnosis: comparison with other methods, in: Proceedings of International Conference on Engineering Applications of Neural Networks (EANN 96), 1996, pp. 427-430.
[9] K. P. Bennet, J. A. Blue, A support vector machine approach to decision trees, Math Report, vols. 97-100, Rensselaer Polytechnic Institute.
[10] D. Nauck, R. Kruse, obtaining interpretable fuzzy classification rules from medical data Artif. Intell-Med. 16(1999) 149-169.
[11] C. A. Pena-Reyes, M.Sipper, A fuzzy-genetic approach to breast Cancer diagnosis, Artif. Intell. Med. 17(1999). 131-155.
[12] R. Setiono, Generating concise and accurate classification rules for Breast Cancer Diagnosis, Artif. Intell. Med.18(2000) 205-219.
[13] D. E. Goodman, L.Boggess, A. Watkins, Artificial immune System Classification of multipleclass problems, in: Proceedings of artificial Neural Networks in Engineering ANNIE (2002), 2002, pp.179-183
[14] J. Abonyi, F. Szeifert, Supervised Fuzzy clustering for the identification of fuzzy classifiers, Pattern Recognition Lett. 24(2003) 2195-2207.
[15] W. H. Land Jr, L. Albertelli, Y. Titkov, P. Kaltsatis, and G. Seburyano. Evolution of neural networks for the detection of breast cancer. In Proc. IEEE. Int. Joint Symposia on Intelligence and Systems, INTSYS ’98, pages 34-, 1998.
[16] Hussein A. Abbass, An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25:265-281, 2002.
[17] R. Janghel, Anupam Shukla, Ritu Tiwari, and Rahul Kala. Intelligent Decision Support System for Breast Cancer. In Advances in Swarm Intelligence, volume 6146, chapter 46, pages 51-358. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
[18] Hai H. Dam, Hussein Abbass, Chris Lokan, Xin Yao, et al. Neural-based learning classifier Systems. Knowledge and Data Engineering, IEEE Transactions on, 20 (1):26-39, 2008.
[19] Md Monirul Islam, Xin Yao, S. M. Shahriar Nirjon, Muhammad Asiful Islam, andKazuyuki Murase. Bagging and boosting negatively correlated neural networks.Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38 (3):771-784, 2008
[20] Arbab Masood Ahmad, Gul Muhammad Khan, and Sahibzada Ali Mahmud. Classification of mammograms using cartesian genetic programming evolved artificial neural networks. In Artificial Intelligence Applications and Innovations, pages 203-213. Springer, 2014
[21] Khan, Maryam Mashal and Ahmed, Arbab Masood and Khan, Gul Muhammad and Miller, Julian. Fast learning Neural Networks using Cartesian Genetic Programming.Neurocomputing, Volume 121, pages 274-289,Elsevier,2013.
[22] Chen, X., and Hurst, S. (1982). A comparison of universal-logic-module realizations and their application in the synthesis of combinatorial and sequential logic networks. IEEE Transactions on Computers, 31, 140-147.
[23] T. Higuchi et al., Real-World Applications of Analog and Digital Evolvable Hardware, IEEE Transactions on Evolutionary Computation, vol 3, no 3, pp 220-235, Sept 99.
[24] A. Thompson, On the Automatic Design of Robust Electronics Through Artificial Evolution in Proceedings of the International Conference on Evolvable Systems: from Biology to Hardware, pp13-24, 1998.
[25] Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007