Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10007878
Experimental Research and Numerical Analysis on Sloshing Dynamics of Irregular Annular Cylindrical Water Tank
Abstract:
This study focuses on the irregular annular cylindrical water tank of nuclear island building. Water tank is one important component of passive containment cooling system (PCS). The sloshing frequency of water is much less than the structure frequency and large-amplitude sloshing occurs easily subjected to seismic loadings. It is known that the floor response spectra may be changed because of the water tank and so do the seismic response of nuclear equipment. Therefore, the sloshing dynamics of water tank should be studied before the dynamic analysis of nuclear island building. A 1/16 scaled model was designed, and the shaking table test was done. The hydrodynamic pressure time histories and variation in wave height were recorded in the test. Then, the sloshing frequencies and damping ratio are recognized. Moreover, modal analysis and time history analysis of numerical model were done based on ADINA. By comparing the sloshing frequencies and hydrodynamic pressures, the reasonableness of test method and the accuracy of numerical results are verified, and it indicates that the formulation of potential-based fluid elements (PBFE) can be used to simulate fluid-structure interaction (FSI) of nuclear island building.

References:

[1] T.L. Schulz, “Westinghouse AP1000 advanced passive plant,” Nuclear Engineering and Design, vol. 236, no. 14–16, 1547-1557, 2006.
[2] C. Zhao, J. Chen, “Dynamic characteristics of AP1000 shield building for various water levels and air intakes considering fluid-structure interaction,” Progress in Nuclear Energy, vol. 70, no.3, 176-187, 2014.
[3] C. Zhao, J. Chen, Q. Xu, “Dynamic analysis of AP1000 shield building for various elevations and shapes of air intakes considering FSI effect subjected to seismic loading,” Progress in Nuclear Energy, vol. 74, no.3, 44-52, 2014.
[4] C. Zhao, J. Chen, and Q. Xu, “FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading” Nuclear Engineering and Design, vol. 280, 372-388, 2014.
[5] Q. Xu, J. Chen, C. Zhang, J. Li, C. Zhao, “Dynamic analysis of AP1000 shield building considering fluid and structure interaction effects,” Nuclear Engineering and Technology, vol. 48, no. 1, 246-258, 2016.
[6] D. Lu, Y. Liu, and X. Zeng, “Experimental and numerical study of dynamic response of elevated water tank of AP1000 PCCWST considering FSI effect,” Annals of Nuclear Energy, vol. 81, 73-83, 2015.
[7] Y. Liu, D. Lu, J. Dang, “Equivalent mechanical model for structural dynamic analysis of elevated tank like AP1000 PCCWST,” Annals of Nuclear Energy, vol. 85, 1175-1183, 2015.
[8] X. Zeng, D. Lu, J. Dang, and Y. Liu “Research on sloshing characteristics in passive cooling storage tank of AP1000 under long-period earthquake,” Nuclear Power Engineering, vol.36, no. 5, 91-95, 2015.
[9] D. Lu, “Sloshing response of the free surface in the main vessel of CEFR excited by 3 sine waves,” Chinese Journal of Nuclear Science and Engineering, vol. 23, no. 4, 306-310, 2003.
[10] W. Wang, H. Xia, and J. Li, “Experimental investigation of nonlinear liquid sloshing in a hemispherical container,” Journal of Tsinghua University (Science and Technology), vol. 48, no. 11, 32-36, 2008.
[11] H. Takahara, K. Kimura, “Frequency response of sloshing in an annular cylindrical tank subjected to pitching excitation,” Journal of Sound and Vibration, vol. 331, 3199-3212, 2012.
[12] J. Wang, J. Lu, “Study on the sloshing simulation system of cargo tanks on ships,” Journal of Zhejiang Ocean University (Natural Science), vol. 33, no. 3, 223-226, 2014.
[13] S. Li, F. Gao, Y.R. Yang, and C.G. Fan, “Finite element modal analysis and dynamic experimental for liquid sloshing,” Nuclear Power Engineering, vol. 28, no. 4, 54-57, 2007.
[14] D.D. Kana, “Status and research needs for prediction of seismic response in liquid containers,” Nuclear Engineering and Design, vol. 69, no. 2, 205-221, 1982.
[15] G.W. Housner, “Dynamic pressure on accelerated fluid containers,” Bulletin of the seismological society of American, vol. 44, no. 1, 15-35, 1957.
[16] G.W. Housner, “The dynamic behavior of liquid in moving containers,” Bulletin of the seismological society of American, vol. 53, no. 2, 381-387, 1963.
[17] ASCE 4-98, “Seismic analysis of safety-related nuclear structures and commentary,” American society of civil engineers.
[18] ACI 350.3-06, “Seismic design of liquid-containing concrete structures and commentary,” American Concrete Institute.
[19] The Steel Construction Institute, “Fluid structure interaction effects on and dynamic response of pressure vessels and tanks subjected to dynamic loading,” RR527, The Steel Construction Institute, the United Kingdom, 2007.
[20] ADINA R&D, “Theory and modeling guide,” Rep. ARD 10-7, ADINA R&D, Watertown, MA, 2010.
[21] K. Wei, W. Yuan, and N. Bouaanani, “Experimental and numerical assessment of the three-dimensional modal dynamic response of bridge pile foundations submerged in water,” Journal of Bridge Engineering, vol. 18, no. 10, 1032-1041, 2013.
[22] N. Bouaanani, F.Y. Lu, “Assessment of potential-based fluid finite element for seismic analysis of dam-reservoir systems,” Computers & Structures, vol. 87, no. 3, 206-224, 2009.
[23] L.G. Olson, K.J. Bathe, “Analysis of fluid–structure interactions: a direct symmetric coupled formulation based on the fluid velocity potential,” Computers & Structures, vol. 21, no. 1-2, 21–32, 1985.
Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007