Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29414

Select areas to restrict search in scientific publication database:
Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design
In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage VB. A low turn-on resistance RON (3.55 mΩ-cm2), low reverse leakage current (< 0.1 µA) at -100 V, and high reverse breakdown voltage VB (> 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode–cathode distance was LAC = 40 µm). Devices without the field plate design exhibit a Baliga’s figure of merit of VB2/ RON = 60.2 MW/cm2, whereas devices with the field plate design show a Baliga’s figure of merit of VB2/ RON = 340.9 MW/cm2 (the anode–cathode distance was LAC = 20 µm).
Digital Object Identifier (DOI):


[1] E. B. Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Würfl, and G. Tränkle, “Fast-switching GaN-based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking,” IEEE Electron Device Lett, vol., 33, no. 3, Mar. 2012.
[2] T. F. Chang, C. F. Huang, T. Y. Yang, C. W. Chiu, T. Y. Huang, K. Y. Lee, and F. Zhao, “Low turn-on voltage dual metal AlGaN/GaN Schottky barrier diode,” Solid-State Electronics, vol. 105, pp. 12-15, Mar. 2015.
[3] J. Hu, S. Stoffels, S. Lenci, N. Ronchi, R. Venegas, S. You, B. Bakeroot, G. Groeseneken, “Physical origin of current collapse in Au-free AlGaN/GaN Schottky barrier diodes,” Microelectronics Reliability, vol. 54, pp. 2196–2199, 2014.
[4] Y. Yao, J. Zhong, Y. Zheng, F. Yang, Y. Ni, Z. He, Z. Shen, G. Zhou, S. Wang, J. Zhang, J. Li, D. Zhou, Z. Wu, B. Zhang, and Y. Liu, “Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode,” Japanese Journal of Applied Physics, vol. 54, pp. 011001, 2015.
[5] M. W. Ha, M. K. Han, C. K. Hahn, “Effects of post-oxidation on leakage current of high-voltage AlGaN/GaN Schottky barrier diodes on Si(111) substrates,” Solid-State Electronics, vol. 81, pp. 1–4, 2013.
[6] A. Minko, V. Hoël, E. Morvan, B. Grimbert, A. Soltani, E. Delos, D. Ducatteau, C. Gaquière, D. Théron, J. C. De Jaeger, H. Lahreche, L. Wedzikowski, R. Langer, and P. Bove, “AlGaN–GaN HEMTs on Si with power density performance of 1.9 W/mm at 10 GHz,” IEEE Electron Devices Lett., vol. 25, no. 7, pp. 453–455, Jul. 2004.
[7] I. Hwang, H. Choi, J. Lee, H. S. Choi, J. Kim, J. Ha, C. Y. Um, S. K. Hwang, J. Oh, J. Y. Kim, J. K. Shin, Y. Park, U. Chung, I. K. Yoo, and K. Kim, “1.6kV, 2.9 mΩ cm2 normally-off p-GaN HEMT device,” IEEE International Symposium on Power Semiconductor Devices and ICs Conf., June. 2012.
[8] J. J. Freedsman, T. Kubo, and T. Egawa, “High drain current density E-Mode Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit (4×108 V2Ω-1cm-2),” IEEE Transactions On Electron Devices, vol. 60, no. 10, pp. 3079–3083, Oct. 2013.
[9] Q. Zhou, B. Chen, Y. Jin, S. Huang, K. Wei, X. Liu, X. Bao, J. Mou, and B. Zhang, “High-performance enhancement-mode Al2O3/ AlGaN/ GaN-on-Si MISFETs with 626 MW/cm2 figure of merit,” IEEE Transactions On Electron Devices, vol. 62, no. 3, pp. 776-781, Mar. 2015.
[10] S. Majumdar, A. Bag, and D. Biswas, “Implementation of veriloga GaN HEMT model to design RF switch,” Microwave And Optical Technology Lett., vol. 57, no. 7, pp. 1765-1768, Jul. 2015.
[11] K. Park, Y. Park, S. Hwang, and W. Jeon, “1kV AlGaN/GaN power SBDs with reduced on resistances,” International Symposium on Power Semiconductor Devices & IC's, pp. 223-226, 2011.
[12] J. G. Lee, B. R. Park, C. H. Cho, K. S. Seo, and H. Y. Cha, “Low turn-nn voltage AlGaN/GaN-on-Si rectifier with gated ohmic anode,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 241-216, Feb. 2013.
[13] Y. W. Lian, Y. S. Lin, J. M. Yang, C. H. Cheng, and S. S. H. Hsu, “AlGaN/GaN Schottky barrier diodes on silicon substrates with selective Si diffusion for low onset voltage and high reverse blocking,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 981-983, Aug. 2013.
[14] M. Zhu, B. Song, M. Qi, Z. Hu, K. Nomoto, X. Yan, Y. Cao, W. Johnson, E. Kohn, D. Jena, H. G. Xing, “1.9-kV AlGaN/GaN lateral Schottky barrier diodes on silicon,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 375-377, Apr. 2015.
[15] S. C. Lee, M. W. Ha, J. C. Her, S. S. Kim, J. Y. Lim, K. S. Seo, and M. K. Han, “High breakdown voltage GaN Schottky barrier diode employing floating metal rings on AlGaN/GaN hetero-junction,” International Symposium on Power Semiconductor Devices & IC's, pp. 247-250, 2005.
[16] G. Y. Lee, H. H. Liu, and J. I. Chyi, “High-performance AlGaN/GaN Schottky diodes with an AlGaN/AlN buffer layer,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1519-1521, Nov. 2011.
[17] O. Seok, M. K. Han, Y. C. Byun, J. Kim, H. C. Shin, M. W. Ha, “High-voltage AlGaN/GaN Schottky barrier diodes on silicon using a post-process O2 treatment,” Solid-State Electronics, vol. 103, pp. 49–53, 2015.
[18] C. W. Tsou, K. P. Wei, Y. W. Lian, and S. H. Hsu, “2.07-kV AlGaN/GaN Schottky barrier diodes on silicon with high Baliga’s figure-of-merit,” IEEE Electron Device Lett., vol. 37, no. 1, pp. 70-73, Jan. 2016.
[19] L. Wang, D. H. Kim, and I. Adesida, “Direct contact mechanism of Ohmic metallization to AlGaN/GaN heterostructures via Ohmic area recess etching,” Appl. Phys. Lett., vol. 95, pp. 172107, Oct. 2009.
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007