Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29381


Select areas to restrict search in scientific publication database:
9999424
Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet
Abstract:
The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.
Digital Object Identifier (DOI):

References:

[1] T.R. Mahapatra, S.K. Nandy, A.S. Gupta, "Oblique stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation,” Meccanica, 47, pp. 1325-1335, 2012.
[2] C.Y. Wang, "Liquid film on an unsteady stretching sheet,” Quart. Appl. Math., 48, pp. 601-610, 1990.
[3] M. Miklavčič, C.Y. Wang, "Viscous flow due to a shrinking sheet,” Quart Appl Math, 64, pp. 283–290, 2006.
[4] C.Y. Wang, "Stagnation flow towards a shrinking sheet,” Int. J. of Non- Lin. Mech., 43, pp. 377-382, 2008.
[5] T-G. Fang, J. Zhang, S-S. Yao, "Viscous flow over an unsteady shrinking sheet with mass transfer,” Chin Phys Lett, 26, pp. 014703, 2009.
[6] K. Bhattacharyya, "Boundary Layer Flow and Heat Transfer over an exponentially shrinking sheet,” Chin. Phys. Lett., 28, pp. 074701, 2011.
[7] S.U.S. Choi, "Enhancing thermal conductivity of fluids with nanoparticle,” ASME FED, 66, pp. 99-10, 1995.
[8] R.K. Tiwari, M.K. Das, "Heat transfer augmentation in a two-sided liddriven differentlially heated cavity utilizing nanofluids,” Int. J. Heat Mass Transf., 50, pp. 2002-2018, 2007.
[9] J. Buongiorno, "Convective transport in nanofluids,” ASME J. Heat Transf., 128, pp. 240-250, 2006.
[10] N.M.D. Arifin, R. Nazar, I. Pop, "Viscous flow due to a permeable stretching/shrinking sheet in a nanofluid,” Sains Malaysia, 40, pp. 1359- 1367, 2011.
[11] N. Bachok, A. Ishak, I. Pop, Stagnation-point flow over a stretching/shrinking sheet in a nanofluid, Nanoscale Research Letters, 6, 2011, pp. 623-632.
[12] N. Bachok, A. Ishak, I. Pop, "Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid,” Boundary Value Prob, 39, pp. 1-10, 2013.
[13] N. Bachok, A. Ishak, I. Pop, "Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid,” Int. J. Heat Mass Transf., 55, pp. 8122-8128, 2012.
[14] A.M. Rohni, S. Ahmad, A.I M.D. Ismail, I. Pop, "Flow over an unsteady shrinking sheet with suction in a nanofluid,” Int. J. of Modern Phys., 9, pp. 512-519, 2012.
[15] P.K Kameswaran, M. Narayana, P. Sibanda, P.V.S.N. Murthy, "Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects,” Int. J. Heat Mass Transf., 55, pp. 7587-7595, 2012.
[16] M.K. Das, "Nanofluid flow over a shrinking sheet with surface slip,” Microfluid Nanofluid, 16, pp. 391-401, 2014.
[17] D.A. Nield and A.V. Kuznetsov, "The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid,” Int. J. Heat Mass Transfer, 52, pp. 3187-3196, 2009.
[18] D.A. Nield and A.V. Kuznetsov, "The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid,” Int. J. Heat Mass Transfer, 54, pp. 374-378, 2011.
[19] A.V. Kuznetsov and D.A. Nield, "Natural convective boundary layer flow of a nanofluid past a vertical plate,” Int. J. Thermal Sci., 49, pp. 243-247, 2010.
[20] A.V. Kuznetsov and D.A. Nield, "Dounle-diffusive natural convective boundary layer flow of a nanofluid past a vertical plate,” Int. J. Thermal Sci., 50, pp. 712-717, 2011.
[21] A.V. Khan, I. Pop, "Boundary layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., 53, pp. 2477-2483, 2010.
[22] N. Bachok, A. Ishak, I. Pop, "Boundary layer flow of nanofluid over a moving surface in a flowing fluid,” Int J Therm Sci, 49, pp. 1663-1668, 2010.
[23] N. Bachok, A. Ishak, I. Pop, "Unsteady boundary layer flow of a nanofluid over a permeable stretching/shrinking sheet,” Int. J. Heat Mass Transf., 55, pp. 2102-2109, 2012.
[24] W.A. Khan and A. Aziz, "Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux,” Int. J. Thermal Sci, 50, pp. 1207-1214, 2011.
[25] S. Nadeem, C. Lee, "Boundary layer flow of a nanofluid over an exponentially stretching surface,” Boundary Value Prob, 7, pp. 94-99, 2012.
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007