Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10007909
Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves
Abstract:
The superhydrophobic surface is widely used to reduce friction for the flow inside micro-channel and can be used to control/manipulate fluid, cells and even proteins in lab-on-chip. Fabricating micro grooves on hydrophobic surfaces is a common method to obtain such superhydrophobic surface. This study utilized the numerical method to investigate the effect of eccentric micro-grooves on the friction of flow inside micro-channel. A detailed parametric study was conducted to reveal how the eccentricity of micro-grooves affects the micro-channel flow under different grooves sizes, channel heights, Reynolds number. The results showed that the superhydrophobic surface with eccentric micro-grooves induces less friction than the counter part with aligning micro-grooves, which means requiring less power for pumps.

References:

[1] H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech. 36 (2004) 381–411.
[2] G. Hagen, Uber den Einfluss der Temperatur auf die Bewegung des Wasser in R¨ohren, Math. Abh. Akad. Wiss. 17.
[3] H. Darcy, Recherches exp´erimentales relatives au mouvement de l’eau dans les tuyaux, Mallet-Bachelier, 1857.
[4] J. Nikuradse, Str¨omungsgesetze in Rauhen Rohren, VDI-Forschungscheft 361; also NACA TM 1292 (1950) .
[5] L. F. Moody, N. J. Princeton, Friction factors for pipe flow, Trans. ASME 66 (8) (1944) 671–684.
[6] R. Garc´ıa-Mayoral, J. Jim´enez, Drag reduction by riblets, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 369 (1940) (2011) 1412–1427.
[7] J. P. Rothstein, Slip on superhydrophobic surfaces, Annual Review of Fluid Mechanics 42 (2010) 89–109.
[8] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1) (1997) 1–8.
[9] C. Navier, M´emoire sur les lois du mouvement des fluides, M´emoires de L’Acad´emie Royale de Sciences de L’Institut de France 6 (1823) 389–440.
[10] J. C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philosophical Transactions of the royal society of London 170 (1879) 231–256.
[11] J. Ou, B. Perot, J. P. Rothstein, Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Physics of Fluids 16 (12) (2004) 4635–4643.
[12] B. Woolford, K. Jeffs, D. Maynes, B. Webb, Laminar fully-developed flow in a microchannel with patterned ultrahydrophobic walls, in: ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, American Society of Mechanical Engineers, 481–488, 2005.
[13] O. I. Vinogradova, Slippage of water over hydrophobic surfaces, International journal of mineral processing 56 (1) (1999) 31–60.
[14] G. E. Karniadakis, A. Beskok, N. Aluru, Microflows and nanoflows: fundamentals and simulation, vol. 29, Springer Science & Business Media, 2006.
[15] E. Lauga, M. Brenner, H. Stone, Microfluidics: the no-slip boundary condition, in: Springer handbook of experimental fluid mechanics, Springer, 1219–1240, 2007.
[16] X. Zhang, F. Shi, J. Niu, Y. G. Jiang, Z. Q. Wang, Superhydrophobic surfaces: from structural control to functional application, Journal of Materials Chemistry 18 (6) (2008) 621–633.
[17] M. Zhou, J. Li, C. X. Wu, X. K. Zhou, L. Cai, Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs), Soft Matter 7 (9) (2011) 4391–4396.
[18] L. C. Gao, T. J. McCarthy, A perfectly hydrophobic surface (θA/θR= 180/180), Journal of the American Chemical Society 128 (28) (2006) 9052–9053.
[19] D. Qu´er´e, Wetting and roughness, Annu. Rev. Mater. Res. 38 (2008) 71–99.
[20] M. Reyssat, J. M. Yeomans, D. Qu´er´e, Impalement of fakir drops, Europhys. Lett. 81 (2008) 26006.
[21] M. A. Samaha, H. V. Tafreshi, M. Gad-el Hak, Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness, Physics of Fluids 23 (1) (2011) 012001.
[22] E. Lauga, H. A. Stone, Effective slip in pressure-driven Stokes flow, Journal of Fluid Mechanics 489 (2003) 55–77.
[23] C.-H. Choi, C.-J. Kim, Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface, Physical Review Letters 96 (6) (2006) 066001.
[24] C. Lee, C.-H. Choi, et al., Structured surfaces for a giant liquid slip, Physical review letters 101 (6) (2008) 064501.
[25] C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph, L. Bocquet, Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries, Physics of Fluids (1994-present) 19 (12) (2007) 123601.
[26] J. Davies, D. Maynes, B. W. Webb, B. Woolford, Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs, Physics of Fluids 18 (8) (2006) 87110.
[27] S. Gogte, P. Vorobieff, R. Truesdell, A. Mammoli, F. van Swol, P. Shah, C. J. Brinker, Effective slip on textured superhydrophobic surfaces, Physics of fluids 17 (5) (2005) 51701–51701.
[28] Y. P. Cheng, C. J. Teo, B. C. Khoo, Microchannel flows with superhydrophobic surfaces: Effects of Reynolds number and pattern width to channel height ratio, Physics of Fluids 21 (2009) (2009) 1–12.
[29] A. Steinberger, C. Cottin-Bizonne, P. Kleimann, E. Charlaix, High friction on a bubble mattress, Nature materials 6 (9) (2007) 665–668.
[30] A. M. Davis, E. Lauga, Geometric transition in friction for flow over a bubble mattress, Physics of Fluids (1994-present) 21 (1) (2009) 011701.
[31] C.-O. Ng, C. Wang, Stokes shear flow over a grating: implications for superhydrophobic slip, Physics of Fluids (1994-present) 21 (1) (2009) 013602.
[32] J. Hyv¨aluoma, J. Harting, Slip flow over structured surfaces with entrapped microbubbles, Physical review letters 100 (24) (2008) 246001.
[33] C. J. Teo, B. C. Khoo, Flow past superhydrophobic surfaces containing longitudinal grooves: Effects of interface curvature, Microfluidics and Nanofluidics 9 (2-3) (2010) 499–511.
[34] C. J. Teo, B. C. Khoo, Effects of interface curvature on Poiseuille flow through microchannels and microtubes containing superhydrophobic surfaces with transverse grooves and ribs, Microfluidics and Nanofluidics 17 (5) (2014) 891–905.
[35] N. Kashaninejad, N.-T. Nguyen, W. K. Chan, Eccentricity effects of microhole arrays on drag reduction efficiency of microchannels with a hydrophobic wall, Physics of Fluids 24 (11) (2012) 112004.
[36] C. J. Teo, B. C. Khoo, Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves, Microfluidics and Nanofluidics 7 (3) (2009) 353–382.
[37] W. Ren, C. Shu, J.Wu,W. Yang, Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications, Computers & Fluids 57 (2012) 40–51.
[38] W. Ren, J. Wu, C. Shu, W. Yang, A stream function–vorticity formulation-based immersed boundary method and its applications, International Journal for Numerical Methods in Fluids 70 (5) (2012) 627–645.
[39] C. Shu, W. Ren, W. Yang, Novel immersed boundary methods for thermal flow problems, International Journal of Numerical Methods for Heat & Fluid Flow 23 (1) (2013) 124–142.
[40] Y. Cheng, J. Xu, Y. Sui, Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling, Applied Thermal Engineering (2014) 1–11.
Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007