Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29284

Select areas to restrict search in scientific publication database:
Generalized Exploratory Model of Human Category Learning
One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.
Digital Object Identifier (DOI):


[1] Kruschke, J. E. (1992). ALCOVE: An exemplar-based connectionist model of category learning, Psychological Review, 99. 22-44.
[2] Kruschke, J.K., & Johansen, M. K. (1999). A model of probabilistic category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 1083-1119.
[3] Love, B.C. & Medin, D.L. (1998). SUSTAIN: A model of human category learning. Proceeding of the Fifteenth National Conference on AI (AAAI-98), 671-676.
[4] Poggio, T. & Girosi, F. (1989) A Theory of Networks for Approximation and Learning). AI Memo 1140/CBIP Paper 31, Massachusetts Institute of Technology, Cambridge, MA.
[5] Poggio, T. & Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 978-982.
[6] Kruschke, J. E. (1993). Three principles for models of category learning. In G. V. Nakamura, R. Taraban, & D. L. Medin (Eds.), Categorization by human and machines: The psychology of learning and motivation (Vol. 29, pp. 57-90). San Diego, CA: Academic Press.
[7] Matsuka, T. & Corter, J. E. (2003). Neural network modeling of category learning using Generalized Radial Basis Functions. Paper presented at 36th Annual Meeting of the Society of Mathematical Psychology. Ogden, UT.
[8] Rosseel, Y. (1996). Connectionist models of categorization: A statistical interpretation. Psychologica Belgica, 36, 93-112
[9] Matsuka, T., Corter, J. E. & Markman, A. B. (2003). Allocation of attention in neural network models of categorization. Under review.
[10] Nosofsky, R.M., Gluck, M.A., Palmeri, T.J., McKinley, S.C., & Glauthier, P. (1994). Comparing models of rule-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961). Memory and Cognition, 22, 352-369.
[11] Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
[12] Matsuka, T & Corter, J. E. (2003). Stochastic learning in neural network models of category learning. In Proceedings of the 44th Annual Meeting of the Cognitive Science Society. Boston, MA
[13] Matsuka, T. & Corter, J.E (2004). Stochastic learning algorithm for modeling human category learning. International Journal of Computational Intelligence. Accepted for publication.
[14] Hanson, S. J., & Gluck, M. A. (1991). Spherical units as dynamic consequential regions: Implications for attention and cue-competition in categorization. Advances in Neural Information Processing Systems #3. San Mateo, CA: Morgan Kaufman, 656-665.
[15] Medin, D.L. & Schaffer, M.M. (1978). Context theory of classification learning, Psychological Review, 85, 207-238.
[16] Matsuka, T (2002). Attention processes in computational models of categorization. Unpublished Doctoral Dissertation. Columbia University, NY.
[17] Matsuka, T. & Corter, J. E. (2003). Empirical studies on attention processes in category learning. Poster presented at 44th Annual Meeting of the Psychonomic Society. Vancouver, BC, Canada.
[18] Hardle, W., Hall, P., & Marron, J. S. (1988). How far are automatically chosen regression smoothing parameters from their optimum? Journal of American Statistical Association, 83, 86-05.
[19] Cherkassky, V. & Mulier, F. (1997). Learning from data: Concepts, Theory, and Methods. New York: Wiley
[20] Minda, J.P. & Smith, J.D. (2002). Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 275-292.
[21] Nosofsky, R.M. & Zaki, S. R. (2002). Exemplar and prototype models revisited: Response strategies, selective attention, and stimulus generalization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 924-940.
[22] Shanks, D.R. (1991). Categorization by a connectionist Network. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 433-443.
[23] Lassaline, M.E. (1990). The basic level in hierarchical classification. Unpublished master-s thesis. University of Illinois, Champaign.
[24] Shepard, R.N., Hovland, C.L., & Jenkins, H.M. (1961). Learning and memorization of classification. Psychological Monograph, 75(13).
[25] Gottwald, R. L. & Garner, W. R. (1975). Filtering and condensation tasks with integral and separable dimensions. Perception & Psychophysics, 2, 50-55.
[26] Ingber, L. (1989). Very fast simulated annealing. Journal of Mathematical Modelling, 12: 967-973.
Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007