Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29286


Select areas to restrict search in scientific publication database:
2744
GPU Implementation for Solving in Compressible Two-Phase Flows
Abstract:
A one-step conservative level set method, combined with a global mass correction method, is developed in this study to simulate the incompressible two-phase flows. The present framework do not need to solve the conservative level set scheme at two separated steps, and the global mass can be exactly conserved. The present method is then more efficient than two-step conservative level set scheme. The dispersion-relation-preserving schemes are utilized for the advection terms. The pressure Poisson equation solver is applied to GPU computation using the pCDR library developed by National Center for High-Performance Computing, Taiwan. The SMP parallelization is used to accelerate the rest of calculations. Three benchmark problems were done for the performance evaluation. Good agreements with the referenced solutions are demonstrated for all the investigated problems.
Digital Object Identifier (DOI):

References:

[1] Anderson C. R., A vortex method for flows with slight density variations, J. Comput. Phys., 61 (1985) 417-444.
[2] Boultone-Stone J. M., Blake J. R., Gas bubbles bursting at a free surface, J. Fluid Mech., 254 (1993) 437-466.
[3] Hirt C. W., Nichols B. D., Volume of fluid method (VOF) for the dynamics of free boundaries, J. Comput. Phys., 39 (1981) 201-225.
[4] Unverdi S., Tryggvason G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100 (1992) 25-37.
[5] Sussman M., Smereka P., Axisymmetric free boundary problems, J. Fluid Mech., 341 (1997) 269-294.
[6] Sethian J. A., Smereka P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35 (2003) 341-372.
[7] Sussman M., Puckett E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162 (2000) 301-337.
[8] Xiao F., Honma Y., Kono T., A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Methods Fluid, 48 (2005) 1023-1040.
[9] Yokoi K., Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm, J. Comput. Phys. 226 (2007) 1985- 2002.
[10] Sun D. L., Tao W. Q.. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows, Int. J. Heat Mass Tran. 53 (2010) 645-655.
[11] Olsson E., Kreiss G., A conservative level set method for two phase flow, J. Comput. Phys., 210 (2005) 225-246.
[12] Kr¨uger J., Westermann R., Linear algebra operators for GPU implementation of numerical algorithms, ACM Trans. Graphics 22 (3) (2003), pp. 908-916.
[13] Goodnight N., Woolley C., Lewin G., Luebke D., Humphreys G., A multigrid solver for boundary value problems using programmable graphics hardware, Graphics Hardware (2003), pp. 1-11.
[14] Harris M. J., Fast fluid dynamics simulation on the GPU, GPU Gems (2004), pp. 637-665 (Chapter 38).
[15] Hagen T.R., Lie K.A., Natvig J.R., Solving the Euler equations on graphics processing units, Comput. Sci. ICCS 3994 (2006), pp. 220-227.
[16] Brandvik T., Pullan G., Acceleration of a two-dimensional Euler flow solver using commodity graphics hardware, Proc. Inst. Mech. Engineers, Pt C: J. Mech. Engrg. Sci. 221 (12) (2007), pp. 1745-1748.
[17] Corrigan A., Camelli F., L¨ohner R., Wallin J., Running unstructured grid based CFD solvers on modern graphics hardware, AIAA Paper 2009- 4001, 19th AIAA Computational Fluid Dynamics, June 2009.
[18] Sheu T. W. H., Yu C. H., Chiu P. H., Development of a dispersively accurate conservative level set scheme for capturing interface in twophase flows, J. Comput. Phys., 228 (2009) 661-686.
[19] Brackbill J. U., Kothe D. B., Zemach C., A continuum method for modeling surface tension, J. Comput. Phys., 100 (1992) 335-354.
[20] Tam C. K. W., Webb J. C., Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107 (1993) 262-281.
[21] Chiu P. H., Sheu T. W.H., Lin R.K., Development of a dispersionrelation- preserving upwinding scheme for incompressible Navier-Stokes equations on non-staggered grids, Numer. Heat Transf., B Fundam, 48 (2005) 543-569.
[22] Chiu P. H., Sheu T. W. H., On the development of a dispersionrelation- preserving dual-compact upwind scheme for convection-diffusion equation, J. Comput. Phys., 228 (2009) 3640-3655.
[23] M. Peri'c, R. Kessler and G. Scheuerer, Comparison of finite-volume numerical methods with staggered and colocated grids, Comput. Fluids, 16 (1988) 389-403.
[24] Golub G. H., Huang L. C., Simon H., Tang W. P., A fast Poisson solver for the finite difference solution of the incompressible Navier- Stokes equation, SIAM J. Sci. Comput., 19 (1998) 1606-1624.
[25] Martin J. C., Moyce W. J., An experimental study of the collapse of fluid columns on a rigid horizontal plane, Philos. Trans. Roy. Soc. Lond.: Ser. A, 244 (1952), 312-324.
[26] Guermond J. L., Quartapelle L., A projection FEM for variable density incompressible flows, J. Comput. Phys., 165 (2000) 167-188.
[27] Ding H., Spelt P. D. M., Shu C.. Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys. 226 (2007) 2078-2095.
[28] Kuo C. H., Hsieh C. W., Lin R. K., and Sheu W. H. , Solving Burgers-s Equation Using Multithreading and GPU, (2010) LNCS 6082, pp. 297- 307.
[29] Brereton G., Korotney D., Coaxial and oblique coalescence of two rising bubbles, In: Sahin, I., Tryggvason, G. (Eds.), Dynamics of Bubbles and Vortices Near a Free Surface, AMD-vol. 119, 1991, ASME, New York.
Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007