Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29526


Select areas to restrict search in scientific publication database:
12082
Influence of Paralleled Capacitance Effect in Well-defined Multiple Value Logical Level System with Active Load
Abstract:
Three similar negative differential resistance (NDR) profiles with both high peak to valley current density ratio (PVCDR) value and high peak current density (PCD) value in unity resonant tunneling electronic circuit (RTEC) element is developed in this paper. The PCD values and valley current density (VCD) values of the three NDR curves are all about 3.5 A and 0.8 A, respectively. All PV values of NDR curves are 0.40 V, 0.82 V, and 1.35 V, respectively. The VV values are 0.61 V, 1.07 V, and 1.69 V, respectively. All PVCDR values reach about 4.4 in three NDR curves. The PCD value of 3.5 A in triple PVCDR RTEC element is better than other resonant tunneling devices (RTD) elements. The high PVCDR value is concluded the lower VCD value about 0.8 A. The low VCD value is achieved by suitable selection of resistors in triple PVCDR RTEC element. The low PV value less than 1.35 V possesses low power dispersion in triple PVCDR RTEC element. The designed multiple value logical level (MVLL) system using triple PVCDR RTEC element provides equidistant logical level. The logical levels of MVLL system are about 0.2 V, 0.8 V, 1.5 V, and 2.2 V from low voltage to high voltage and then 2.2 V, 1.3 V, 0.8 V, and 0.2 V from high voltage back to low voltage in half cycle of sinusoid wave. The output level of four levels MVLL system is represented in 0.3 V, 1.1 V, 1.7 V, and 2.6 V, which satisfies the NMP condition of traditional two-bit system. The remarkable logical characteristic of improved MVLL system with paralleled capacitor are with four significant stable logical levels about 220 mV, 223 mV, 228 mV, and 230 mV. The stability and articulation of logical levels of improved MVLL system are outstanding. The average holding time of improved MVLL system is approximately 0.14 μs. The holding time of improved MVLL system is fourfold than of basic MVLL system. The function of additional capacitor in the improved MVLL system is successfully discovered.
Digital Object Identifier (DOI):

References:

[1] O. T. Hanyu and M. Kameyama, "A 200 MHz pipelined multiplier using 1.5 V-supply multiple-valued MOS current-mode circuits with dual-rail source-coupled logic," IEEE Journal of Solid-State Circuits, vol. 30(11), pp.1239-1245, Nov. 1995. Pages:1239 - 1245
[2] N. Jin; S. Y. Chung, R. M. Heyns, P. R. Berger, Y. Ronghua, P. E. Thompson, and S. L. Rommel, "Tri-state logic using vertically integrated Si-SiGe resonant interband tunneling diodes with double NDR," IEEE Electron Device Letters, vol. 25(9), pp. 646-648, Sept. 2004.
[3] R. Versari, D. Esseni, G. Falavigna, M. Lanzoni, and B. Ricco,"Optimized programming of multilevel flash EEPROMs," IEEE Transactions on Electron Devices, vol. 48(8), pp.1641-1646, Aug. 2001.
[4] T. Temel and A. Morgul, "Implementation of multi-valued logic, simultaneous literal operations with full CMOS current-mode threshold circuits," Electronics Letters, vol. 38(4), pp. 160-161, Feb 2002.
[5] S. J. Piestrak and A. Dandache, "Minimal test set for multi-output threshold circuits implemented as bubble sorting networks," Electronics Letters, vol. 36(3), pp.202-204, Feb. 2000.
[6] A. C. Seabaugh, E. A. Beam, A. H. Taddiken, J. N. Randall, and Y. C. Kao, "Co-integration of resonant tunneling and double heterojunction bipolar transistors on InP," IEEE Electron Device Letters, vol. 14(10) , pp. 472-474, Oct. 1993.
[7] K. J. Chen, K. Maezawa, and M. Yamamoto, "InP-based high-performance monostable-bistable transition logic elements (MOBILEs) using integrated multiple-input resonant-tunneling devices," IEEE Electron Device Letters, vol. 17 (3), pp. 127-129, March 1996.
[8] K. J. Gan and Y. K. Su, "Novel multipeak current-voltage characteristics of series-connected negative differential resistance devices," IEEE Electron Device Letters, vol.19 (4), pp.109-111, April 1998.
[9] W. C. Liu, L. W. Laih, S. Y. Cheng, W. L. Chang, W. C. Wang, J. Y. Chen, and P. H. Lin,"Multiple negative-differential-resistance (MNDR) phenomena of a metal-insulator-semiconductor-insulator-metal (MISIM)-like structure with step-compositioned InxGa1-xAs quantum wells," IEEE Transactions on Electron Devices, vol. 45(2), pp.373-379, Feb. 1998.
[10] S. Villareal, M. Weichold, and J. Pineda, "Simulation study of compact quantising circuits using multiple-resonant tunnelling transistors," Electronics Letters, vol. 34(2), pp.161-162, Jan. 1998.
[11] J. L. Huber, J. Chen, J. A. McCormack, C. W. Zhou, and M. A. Reed,"An RTD/transistor switching block and its possible application in binary and ternary adders," IEEE Transactions on Electron Devices, vol. 44(12), pp.2149-2153, Dec. 1997.
[12] W. C. Liu, W. S. Lour, and Y. H. Wang, "Investigation of AlGaAs/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT)," IEEE Transactions on Electron Devices, vol. 39(10), pp.2214-2219,Oct. 1992.
[13] W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S.Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng,"Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications," IEEE Transactions on Electron Devices, vol. 47(8), pp.1553-1559, Aug. 2000.
[14] J. J. Blakley, "Architecture for hardware implementation of programmable ternary de Bruijn sequence generators," Electronics Letters, vol. 34(25), pp. 2389-2390, Dec. 1998.
[15] F. Toto and R. Saletti, "CMOS dynamic ternary circuit with full logic swing and zero-static power consumption," Electronics Letters, vol. 34(11), pp. 1083-1084, May 1998.
[16] C. C. Yang, "High Performance Multiple Stepped Quantum Well Resonant Microwave Devices", Electronics Letters, Vol. 42(25), pp.1485-1487, December, 2006.
[17] C. C. Yang and Yan Kuin Su,"Well-defined electrical properties high-strain resonant interband tunneling structure",Microelectronics Journal, vol.39(1), pp.67-69, January, 2008.
[18] C. C. Yang and Yan Kuin Su," High Performance Aluminum Arsenic Intraband Resonant Microwave Devices", Microelectronics Journal, vol.39(1), pp.90-93, January, 2008.
[19] C. C. Yang," Frequency Computation of Resonant Signal in Resonant Tunneling Circuit for Communication," 2010 Second International Joint Journal Conference on Computer and Communication Technology (IJJCCT 2010), Jeju Island, Korea 27-28 December 2010.
Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007