Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29912


Select areas to restrict search in scientific publication database:
11542
Involving Action Potential Morphology on a New Cellular Automata Model of Cardiac Action Potential Propagation
Abstract:
Computer modeling has played a unique role in understanding electrocardiography. Modeling and simulating cardiac action potential propagation is suitable for studying normal and pathological cardiac activation. This paper presents a 2-D Cellular Automata model for simulating action potential propagation in cardiac tissue. We demonstrate a novel algorithm in order to use minimum neighbors. This algorithm uses the summation of the excitability attributes of excited neighboring cells. We try to eliminate flat edges in the result patterns by inserting probability to the model. We also preserve the real shape of action potential by using linear curve fitting of one well known electrophysiological model.
Digital Object Identifier (DOI):

References:

[1] N. Menke, M.D.; S. Angus; K. Cooper, V. Shah, "A Simple 2-D Model of Cardiac Tissue Conduction"
[2] M. C. Trudel, R. M. Gulrajani, L. J. Leon, "simulation of propagation in a realistic-geometry computer heart model with parallel processing"
[3] C. R. H. Barbosa, "Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model", Phys. Med. Biol. 48, 4151-4164.
[4] P. B. Gharpure, C.r R. Johnson, "A Cellular Automaton Model of Electrical Activation in Canine Ventricles: A Validation Study," SCI INSTITUTE, 1995.
[5] C. L. Chang, Y., Zhang, Y. Y. Gdong, "Cellular Automata For Edge Detection Of Images", Proceedmgs of the Third Intetnauonal Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004.
[6] Z. Li-Sheng, "Cellular Automaton Simulations for Target Waves in Excitable Media", Commun. Theor. Phys. (Beijing, China), Vol. 53, No. 1, pp. 171-174, January 15, 2010.
[7] W. E. S. Yu, R. P. Saldana, "Computational Aspects of Modeling Excitable Media Using Cellular Automata"
[8] D. Makowiec, "cellular automata model of cardiac pacemaker"
[9] E. Costa Monteiro, L. C. Miranda, A. C. Bruno, and P. Costa Ribeiro, "A Cellular Automaton Computer model for the study of magnetic detection of cardiac tissue activation during artial flutter," IEEE transaction on magnetics, Vol. 34, NO. 5, Sep. 1998.
[10] K. M. Moe, C.R. Werner, J.A. Abildson, N.Y. Utica, "A computer model of atrial fibrillation," American Heart Journal, Vol 67, pp 200- 220, 1964.
[11] M. Gerhardt, H. Schuster, J.J Tyson, "A cellular automation model of excitable media including curvature and dispersion," Science, Vol 247, pp 1563-1566, 1990.
[12] M. Markus, B. Hess, "Isotropic cellular automaton for modelling excitable media," Nature, Vol 347, pp 56-58, 1990.
[13] J.R Weimar, J.J Tyson, L.T Watson, "Diffusion and wave propagation in cellular automaton models of excitable media," Physica D, Vol 55, pp 309-327, 1992.
[14] J.R Weimar, J.J Tyson, L.T Watson, "Third generation Cellular Automaton for Modeling Excitable Media," Physica D, Vol 55, pp 328- 339, 1992.
[15] http://cor.physiol.ox.ac.uk/
[16] www.ocp.ltd.uk/ap1.html
Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007