Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29830

Select areas to restrict search in scientific publication database:
Iterative solutions to the linear matrix equation AXB + CXTD = E
In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXTD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative algorithm is quite efficient.
Digital Object Identifier (DOI):


[1] G. R. Duan. Solutions to matrix equation AV + BW = V F and their application to eigenstructure assignment in linear systems. IEEE Transactions on Automatic Control, 38 (1993) 276-280.
[2] S. P. Bhattacharyya, E. De Souza. Pole assignment via Sylvester-s equation. Systems and Control Letters, 1 (1972) 261-263.
[3] G. R. Duan. On the solution to Sylvester matrix equation AV +BW = EV F. IEEE Transactions on Automatic Control, 41 (1996) 612-614.
[4] K. Zhou, J. Doyle, K. Glover. Robust and optimal control. Prentice-Hall, 1996.
[5] B. Zhou, G. R. Duan. An explicit solution to the matrix equation AX− XF = BY . Linear Algebra and its Applications, 402 (2005) 345-366.
[6] B. Zhou, G. R. Duan. A new solution to the generalized Sylvester matrix equation AV − EV F = BW. Systems & Control Letters, 55 (2006) 193-198.
[7] F. Ding, T. Chen. Iterative least squares solutions of coupled Sylvester matrix equations. Systems & Control Letters, 54 (2005) 95-107.
[8] H. Mukaidani, H. Xu, K. Mizukami. New iterative algorithm for algebraic Riccati equation related to H∞ control problem of singularly perturbed systems. IEEE Transactions on Automatic Control, 46 (2001) 1659-1666.
[9] I. Borno, Z. Gajic. Parallel algorithm for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems. Computers & Mathematics with Applications, 30 (1995) 1-4.
[10] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia, 1995.
[11] T. Mori, A. Derese. A brief summary of the bounds on the solution of the algebraic matrix equations in control theory. International Journal of Control, 39 (1984) 247-256.
[12] M. Mrabti, M. Benseddik. Unified type non-stationary Lyapunov matrix equations-simultaneous eigenvalue bounds. Systems & Control Letters, 18 (1995) 73-81.
[13] L. Xie, Y. Liu, H. Yang. Gradient based and least squares based iterative algorithms for matrix equations AXB + CXTD = F. Applied Mathematics and Computation, 217 (2010) 2191-2199.
[14] L. Xie, J. Ding, F. Ding. Gradient based iterative solutions for general linear matrix equations. Computers and Mathematics with Applications, 58 (2009) 1441-1448.
[15] F. Ding, T. Chen. On iterative solutions of general coupled matrix equations. SIAM Journal on Control and Optimization, 44 (2006) 2269- 2284.
[16] F. Ding, P. X. Liu, J. Ding. Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Applied Mathematics and Computation, 197 (2008) 41-50.
[17] J. Ding, Y. Liu, F. Ting. Iterative solutions to matrix equations of the form AiXBi = Fi. Computers and Mathematics with Applications, 59 (2010) 3500-3507.
[18] P. Lancaster, M. Tismenetsky. The Theory of Matrices. 2rd Edition. London: Academic Press, 1985.
[19] A. Ben-Israel, T. N. E. Greville. Generalized Inverses. Theory and Applications (second ed). New York: Springer, 2003.
Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007