Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29847


Select areas to restrict search in scientific publication database:
17030
Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes
Abstract:
The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the experimental data. We observe that the convection and diffusion terms in the granular temperature cannot be neglected in gas solid flow simulation along a horizontal pipe. The particle-wall collision and lift also play important role in eulerian modeling. We also investigated the effect of flow parameters like gas velocity, particle properties and particle loading on pressure drop prediction in different pipe diameters. Pressure drop increases with gas velocity and particle loading. The gas velocity has the same effect ((proportional toU2 ) as single phase flow on pressure drop prediction. With respect to particle diameter, pressure drop first increases, reaches a peak and then decreases. The peak is a strong function of pipe bore.
Digital Object Identifier (DOI):

References:


[1] M. Sommerfeld, Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Pt 1. Particle transport. Int. J. Multiphase Flow, vol.29, no.4, pp. 675–699, 2003.
[2] D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, Boston, 1994.
[3] G.H. Yeoh and J. Tu, Computational Techniques for Multi-Phase Flows: Basics and Applications. Elsevier Science & Technology, Amsterdam, 2010.
[4] M. Bohnet and O. Triesch, Influence of particles on fluid turbulence in pipe and diffuser gas-solid flows. Chem. Eng. Technol., vol. 26, pp. 1254–1261, 2003.
[5] J. Cao and G. Ahmadi, Gas-particle two-phase turbulent flow in a vertical duct. Int. J. Multiphase Flow, vol.21, no.6, pp.1203–1228, 1995.
[6] Y. Zhang and J.M. Reese, Particle-gas turbulence interactions in a kinetic theory approach to granular flows. Int. J. Multiphase Flow, vol.27, pp.1945–1964, 2001.
[7] Y. Zhang and J.M. Reese, Gas turbulence modulation in a two-fluid model for gas-solid flows. AIChE Journal, vol.49, no.12, pp.3048–3065, 2003.
[8] C.T. Crowe, On models for turbulence modulation in fluid-particle flows. Int. J. Multiphase Flow, vol.26, pp.719–727, 2000.
[9] K. Hadinoto and J.S. Curtis, Effect of interstitial fluid on particleparticle interactions in kinetic theory approach of dilute turbulent fluidsolid flow. Ind. Eng. Chem. Res., vol.43, pp.3604–3615, 2004.
[10] Y. Tsuji and Y. Morikawa, LDV measurements of an air-solid twophase flow in a horizontal pipe. J. Fluid Mech., vol.120, pp.385-409, 1982.
[11] C.K.K. Lun, S.B. Savage, D.J. Jeffrey and N. Chepurniy, Kinetic theories for granular flow: Inelastic particles in couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech., vol.140, pp.223-256, 1984.
[12] J. O. Hinze , Turbulence, McGraw-Hill Publishing Co., New York ,1975.
[13] B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, vol.3, pp.269-289, 1974.
[14] P.C. Johnson and R. Jackson, Frictional-Collisional Constitutive Relations for Granular Materials, with Application to Plane Shearing, J. Fluid Mech. Vol.176, pp.67-93,1987.
[15] K. Agrawal, P.N. Loezos, M. Syamlal and S. Sundaresan, The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech., vol.445, pp. 151–185, 2001.
[16] C.T. Crowe, M. Sommerfeld and Y. Tsuji, Fundamentals of Gas particle and Gas – Droplet Flows. CRC Press, USA, 1998.
[17] P.R. Owen, Pneumatic transport. J. Fluid Mech., vol.39, pp.407-432, 1969.
[18] V. Singh and L. Simon, Predicting pressure drop in pneumatic conveying using the discrete element modeling approach, Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia, 2009.

Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007