Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29381

Select areas to restrict search in scientific publication database:
Mean Velocity Modeling of Open-Channel Flow with Submerged Rigid Vegetation
Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.
Digital Object Identifier (DOI):


[1] C. Liu, and Y-M, Shen, “Flow Structure and Sediment Transport with Impacts of Aquatic Vegetation,” J. Hydrodyn., vol.20, no.4, pp. 461- 468, 2008.
[2] W. Wu, and Z.HE, “Effects of vegetation on flow conveyance and sediment transport capacity,” IJSR, vol. 23, no.3, pp. 247-259, 2009.
[3] J. M. V. Samani, and M. Mazaheri, “An analytical model for velocity distribution in transition zone for channel flows over inflexible submerged vegetation” J. Agr. Sci. Tech., vol.11, pp. 573-584, 2009.
[4] A. Defina and A. C. Bixio, “Mean flow and turbulence in vegetated open channel flow,” Water Resour. Res., vol.7,pp. 1-12, July 2005.
[5] M. Morri, A. Soualmia and P.Belleudy,” The Tests of Analytical Models for Prediction the Vertical Velocity Profiles through Submerged Vegetation,” in Conf. 2014. Int. Conf. on Mechanics and Energy, ICME’2014, March 18-20, 2014, Monastir, Tunisia.
[6] F. López, and M.H. García, “Mean Flow and Turbulence Structure of Open Channel Flow through Non-emergent Vegetation,”J. Hydraul. Eng., vol.127, no.5, pp. 392-402, May.2001.
[7] T. Tsujimoto, T. Okada, and K, Kontani, “Turbulent structure of openchannel flow over flexible vegetation,” Progressive Report. Hydr. Lab., Kanazawa University, Japon, pp. 37-45, 1993.
[8] E. Kubrak, J.Kubrak, and P.M. Rowinski, “Verticalvelocitydistributions through and above submerged, flexible vegetation,” Hydrolog. Sci. J., vol.53, no.4, pp. 905-920, Aug. 2008.
[9] J. Jarvela, “Effect of submerged flexible vegetation on flow structure and resistance,” J.Hydrol., vol.307, pp: 233-241, 2005.
[10] D.C.M.Augustijn, F. Huthoff and E.H. Van Velzen,” Comparison of vegetation roughness descriptions,”in Conf. 2008. Int. Conf. on Fluvial Hydraulics, River flow, Çeşme. Izmir, Turkey, pp.3-8.
[11] D. Klopstra, H. J. Barneveld, J. M. van Noortwijk, and E. H. Van Velzen,“Analytical Model for Hydraulic Roughness of Submerged Vegetation”. In Proc. Managing Water: Coping with Scarcity and Abundance. 27 th IAHR Congress, San Fransisco, New York, 1997, PP. 775-780.
[12] M.B. Stone, and H.T. Shen, “Hydraulic Resistance of Flow in Channels with Cylindrical Roughness,” J. Hydraul. Eng., vol.128, no.5, pp.500- 506, 2002.
[13] E.H. Van Velzen, P. Jesse, P. Cornelissen and H. Coops, “Stromingsweerstandvegetatieinuiterwaarden,”; RIZA Reports, Arnhem, Netherlands, 2003.
[14] M.J. Baptist, V. Babovic, J.R.Uthurburu, M.Keijzer, R.E. Uittenbogaard, A.Mynett, A.Verwey,“On inducing equations for vegetation resistance,”.J. Hydraul. Res.,vol.45, no. 4, pp.435-45, 2007.
[15] F. Huthoff, D.C.M. Augustijn, and S. J. M.Hulscher,.“Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation. Water Resour. Res.,vol. 43, pp.1-10, 2007.
[16] W. Yang, and S. Choi, “A Two-layer approach for depth-limited openchannel flows with submerged vegetation,” J. Hydraul. Res., vol.48, no. 4, pp. 466–475, 2010.
[17] W.X. Huai, Y.H. Zeng, Z.G. Xu, Z.H. Yang, “Three-Layer Model for vertical velocity distribution in open channel flow with submerged rigid vegetation,” Adv. Water Resour., vol.32, no.4, pp.487–492, January 2009.
[18] J. M. V. Samani, and M.Mazaheri, “An analytical model for velocity distribution in transition zone for channel flows over inflexible submerged vegetation,” J. Agr. Sci. Tech., vol.11, pp.573-584, 2009.
[19] H. A. Einstein, and R. B. Banks, “Fluid resistance of composite roughness,” Transactions of the Amer. Geoph. Union. vol.31, no.4, pp. 603-610, 1950.
[20] F. López, and M. H. García, “Open-channel flow through simulated vegetation: Suspended sediment transport modeling,” Water Resour. Res, vol.34, no.9, pp. 2341-2352, 1998
[21] D. Poggi, A, Porporato, L. Ridolfi, J.D. Albertson, and G. G. Katul, “The effect of vegetation density on canopy sub-layer turbulence,” Bound.-Layer Meteor, vol.111, no.3, pp. 565-587, 2004.
[22] E. Murphy, M. Ghisalberti and H. Nepf, “Model and laboratory study of dispersion in flows with submerged vegetation,” Water Resour. Res, vol .43, no.5, pp.1-12, 2007.
[23] T. Tsujimoto, and T. Kitamura, “Velocity profile of flow in vegetatedbed channel,” Progressive Report. Hydr. Lab., Kanazawa University, Japon, pp. 43-55, 1990.
[24] J. Jarvela, “Effect of submerged flexible vegetation on flow structure and resistance,” J.Hyd, vol. 307, pp. 233-24, 2005.
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007