Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29416


Select areas to restrict search in scientific publication database:
9998258
MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid
Abstract:
The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T\infty)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0)  the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.
Digital Object Identifier (DOI):

References:

[1] K. Hiemenz,"Dei grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden,”Kreiszylinder. Dingl. Polytech. J.,vol. 32, pp. 321–410, 1911.
[2] E. R. G. Eckert, "Die berechnung des warmeuberganges in der laminaren grenzschicht umstromter korper,”VDI Forschungsheft Vol. 416, pp. 1–23, 1942.
[3] A. Ishak, K. Jafar, R.Nazar, and I. Pop,"MHD stagnation point flow towards a stretching sheet,”Physica A Vol. 388, pp. 3377–3383, 2009.
[4] A. Ishak, Y. Y. Lok, I. Pop,"Stagnation-point flow over a shrinking sheet in a micropolar fluid,” Chem. Eng. Comm., Vol. 197,pp. 1417–1427, 2010
[5] T. Hayat, Z. Abbas, M. Sajid,"MHD stagnation-point flow of an upper convected-Maxwell fluid over a stretching surface,”Chaos Soliton Fractals, Vol. 39, pp. 840–848, 2009.
[6] K. Jafar, R. Nazar, A. Ishak, and I. Pop,"MHD flow and heat transfer over stretching/shrinking sheets with external magnetic field, viscous dissipation and Joule effects,” Can. J. Chem. Eng., Vol. 90, No. 5, pp. 1336–1346, 2012.
[7] M. Miklavčič, and C. Y. Wang,"Viscous flow due to a shrinking sheet,” Quart. Appl. Math., Vol. 64,pp. 283–290, 2006.
[8] C. Y. Wang,"Liquid film on an unsteady stretching sheet,” Quart. Appl. Math., Vol, 48,pp. 601–610, 1990.
[9] C. Y. Wang,"Stagnation flow towards a shrinking sheet,”Int. J. Non-Linear Mech., Vol. 43, pp. 377–382, 2008.
[10] L. Mealey, and J. H. Merkin,"Free convection boundary layers on a vertical surface in a heat generating porous medium,”IMA J. Appl. Math., Vol.73, pp. 231–253, 2008.
[11] H. Merkin, "Natural convective boundary-layer flow in a heat generating porous medium with a prescribed wall heat flux,” J. Appl. Math. Phys. (ZAMP), Vol. 60, pp. 543–564, 2009.
[12] H. Merkin, and I. Pop,"Natural convection boundary-layerflow in a porous medium with temperature-dependent boundary conditions,” Transp. Porous Med., Vol. 85,pp. 397–414, 2010.
[13] H. Merkin,"Free convection boundary layers on a vertical suface in a heat generating porous medium: Similarity solutions,”Quart. J. Mech Applied Math., Vol. 61, No. 2, pp.205–218, 2008.
[14] Sadeghy K, Hajibeygi H, Taghavi SM (2006) Stagnation-point flow of upper-convected Maxwell fluid. Int. J. Non-Linear Mech. 41: 1242–1247.
[15] M. Kumari, and G. Nath,"Steady mxed convection stagnation-point flow of upper-convected Maxwell fluids with magnetic field,”Int. J. Non-Linear Mech., Vol. 44, pp. 1048–1055, 2009.
[16] T. Hayat, M. Awais, M. Qasim, and A.Hendi,"Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid,”Int. J. Heat Mass Transfer, Vol 54, pp. 3777–3782, 2011.
[17] K. Jafar, R. Nazar R, A. Ishak, and I. Pop,"MHD mixed convection stagnation point flow of an upper convected Maxwell fluid on a vertical surface with an induced magnetic field,”Magnetohydrodynamics, Vol. 47, pp. 61–78, 2011.
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007