Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10007901
Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices
Abstract:
This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.
Digital Article Identifier (DAI):

References:

[1] C. C. Chang and R. J. Yang, “Electrokinetic mixing in microfluidic systems,” Microfluid Nanofluid, vol. 3 (5), 2007, pp. 501–525.
[2] A. V. Delgado, F. Gonzalez-Caballero, R. J. Hunter, L. K. Koopal and J. Lyklema, “Measurement and interpretation of electrokinetic phenomena,” Journal of Colloid and Interface Science, vol. 309 (2), 2007, pp. 194–224.
[3] S. Wall, “The history of electrokinetic phenomena,” Current Opinion in Colloid and Interface Science, vol. 15 (3), 2010, pp. 119–124.
[4] C. C. Chang and R. J. Yang, “Computational analysis of electrokinetically driven flow mixing with patterned blocks,” J Micromech Microeng, vol. 14, 2004, pp. 550–558.
[5] C. C. Chang and R. J. Yang, “Electroosmosis – a Mechanism of Micromixer and Micropump,” J Micromech Microeng, 14, 2004, pp. 550.
[6] C. K. Chen and C. C. Cho, “Electrokinetically driven flow mixing utilizing chaotic electric fields,” Microfluid Nanofluid, vol. 5 (6), 2008, pp. 785–793.
[7] F. R. Phelan, P. Kutty and J. A. Pathak, “An electrokinetic mixer driven by oscillatory cross flow,” Microfluid Nanofluid, vol. 5 (1), 2008, pp. 101–118.
[8] D. Sinton, C. E. Canseco, L. Ren and D. Li, “Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels,” Journal of Colloid and Interface Science, vol. 254 (1), 2002, pp. 184–189.
[9] G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, 2006, pp. 368–373.
[10] D. Mark, S. Haeberle, G. Roth, F. Stettenz and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev., vol. 39 (3), 2010, pp. 1153–1182.
[11] J. K. Chen, W. J. Luo and R. J. Yang, “Electroosmotic flow driven by DC and AC electric fields in curved microchannels,” Jap J Appl Phys 45, 2006, pp. 7983–7990.
[12] D. Erickson and D. Li, “Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing,” Langmuir, vol. 18 (5), 2002, pp. 1883-1892.
[13] R. F. Ismagilov, A. D. Stroock, P. A. Kenis, G. M. Whitesides and H. A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flow in microchannels,” Appl Phys Lett, vol. 76 (17), 2000, pp. 2376–2378.
[14] S. Wiggins and J. M. Ottino, “Foundations of chaotic mixing,” Phil Trans R Soc Lond A, vol. 362, 2004, pp. 937–970.
[15] R. J. Hunter, “Zeta potential in colloid science: principles and applications,” Academic Press, New York, 1981.
[16] COMSOL Multiphysics, “Introduction to COMSOL Multiphysics,” http://www.comsol. no/shared/downloads/Introduction COMSOL Multiphysics.pdf (accessed in August 2015).
[17] G. H. Tanga, L. Zhuo, J. K. Wang, Y. L. He and W. Q. Tao, “Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method,” Journal of Applied Physics, vol. 100, Issue 9, 2006, pp. 094908–094910.
[18] H. S. Seo, B. Han and Y. J. Kim, “Numerical Study on the Mixing Performance of a Ring-Type Electroosmotic Micromixer with Different Obstacle Configurations,” J. Nanosci. Nanotechnol., vol. 12 (6), 2012, pp. 4523–4530.
Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007