Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29530


Select areas to restrict search in scientific publication database:
10004387
Numerical Investigation of the Effect of Geometrical Shape of Plate Heat Exchangers on Heat Transfer Efficiency
Abstract:
Optimizations of Plate Heat Exchangers (PHS) have received great attention in the past decade. In this study, heat transfer and pressure drop coefficients are compared for rectangular and circular PHS employing numerical simulations. Plates are designed to have equivalent areas. Simulations were implemented to investigate the efficiency of PHSs considering heat transfer, friction factor and pressure drop. Amount of heat transfer and pressure drop was obtained for different range of Reynolds numbers. These two parameters were compared with aim of F "weighting factor correlation". In this comparison, the minimum amount of F indicates higher efficiency. Results reveal that the F value for rectangular shape is less than circular plate, and hence using rectangular shape of PHS is more efficient than circular one. It was observed that, the amount of friction factor is correlated to the Reynolds numbers, such that friction factor decreased in both rectangular and circular plates with an increase in Reynolds number. Furthermore, such simulations revealed that the amount of heat transfer in rectangular plate is more than circular plate for different range of Reynolds numbers. The difference is more distinct for higher Reynolds number. However, amount of pressure drop in circular plate is less than rectangular plate for the same range of Reynolds numbers which is considered as a negative point for rectangular plate efficiency. It can be concluded that, while rectangular PHSs occupy more space than circular plate, the efficiency of rectangular plate is higher.
Digital Object Identifier (DOI):

References:

[1] A. Mulley, Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a plate Heat Exchanger with Chevron Plates.pdf. 1999, Journal of heat transfer. p. 110.W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
[2] Han, X.H., et al., A numerical and experimental study of chevron, corrugated-plate heat exchangers. International Communications in Heat and Mass Transfer, 2010. 37(8): p. 1008-1014.
[3] Forooghi, P. and K. Hooman, Experimental analysis of heat transfer of supercritical fluids in plate heat exchangers. International Journal of Heat and Mass Transfer, 2014. 74: p. 448-459.
[4] R.K. Shah, A.S.W., Plate heat exchanger design theory. Industrial Heat Exchangers, von Karman Institute Lecture Series, 1991.
[5] W.M. Kays, A.L.L., Compact Heat Exchangers. Krieger Publ. Co., Florida, USA, 1998. 3rd ed.
[6] Li, W., et al., Numerical and experimental analysis of composite fouling in corrugated plate heat exchangers. International Journal of Heat and Mass Transfer, 2013. 63: p. 351-360
[7] Shah, R.K., Fundamentals of Heat Exchanger Design. 2003. 972-972.
[8] Rao, B.P.a.D., Sarit K, An experimental study on the influence of flow maldistribution on the pressure drop across a plate heat exchanger. Journal of fluids engineering, 2004. 126: p. 680--691.
[9] Miura, R.Y.a.G., Flavio CC and Tadini, Carmen C and Gut, Jorge AW, The effect of flow arrangement on the pressure drop of plate heat exchangers. Chemical Engineering Science, 2008. 63: p. 5386--5393.
[10] Wang, L. and B. Sunden, Optimal design of plate heat exchangers with and without pressure drop specifications. Applied Thermal Engineering, 2003. 23(3): p. 295-311.
[11] S. Kakaç, H.L., Heat Exchangers Selection, Rating and Thermal Design. CRC Press, 2002.
[12] Dovic and Svaic, Influence of chevron plates geometry on performances of plate heat exchangers. Tehnicki Vjesnik, 2007. 14: p. 37-45.
[13] Gut, J.A., et al., Thermal model validation of plate heat exchangers with generalized configurations. Chemical Engineering Science, 2004. 59(21): p. 4591-4600.
[14] Martin, H., A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chemical Engineering and Processing: Process Intensification, 1996. 35(4): p. 301-310.
[15] A.W.G. Jorge, J.M.P., Optimal configuration design for plate heat exchangers. International Journal of Heat and Mass Transfer 2004. 47: p. 4833–4848.
[16] W.W. Focke, J.Z., I. Olivier, The effect of the corrugation inclination angle on the thermalhydraulic performance of plate heat exchangers. Int. J. Heat Mass Transfer 1985. 28(8): p. 1469–1479
[17] Heavner, R.L., kumer, H., performance of an industrial plate heat exchanger: Effect of Chevron Angle 1993, AlChE symposium series.
[18] Arup Kumar Borah, P.K.S., Prince Goswami, Advances in Numerical. American Journal of Engineering Science and Technology Research, 2013. 1: p. 156 -166.
[19] Abdulsayid, A.G.A., Modeling-of-Fluid-Flow-in-2D-Triangular-Sinusoidal-and-Square-Corrugated-Channels. World Academy of Science, Engineering and Technology, 2012. 6.
[20] Damir Dovic, S.S., Experimental and Numerical Study of the Flow and Heat Transfer.International Refrigeration and Air Conditioning Conference, 2004.
[21] Dović, D., B. Palm, and S. Švaić, Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry. International Journal of Heat and Mass Transfer, 2009. 52(19-20): p. 4553-4563.
[22] R. L. Heavner, H.K., performance of an industrial Plate Heat Exchanger: Effect of Chevron Angle. AlChE symposium series, 1993. 89(295): p. 262-267.
[23] Focke, W., J. Zachariades, and I. Olivier, The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers. International Journal of Heat and Mass Transfer, 1985. 28(8): p. 1469-1479.
[24] Kanaris, a.G., a.a. Mouza, and S.V. Paras, Flow and Heat Transfer Prediction in a Corrugated Plate Heat Exchanger using a CFD Code. Chemical Engineering & Technology, 2006. 29(8): p. 923-930.
[25] Tsai, Y.C., F.B. Liu, and P.T. Shen, Investigations of the pressure drop and flow distribution in a chevron-type plate heat exchanger. International Communications in Heat and Mass Transfer, 2009. 36(6): p. 574-578.
[26] Jain, S., A. Joshi, and P. Bansal, A new approach to numerical simulation of small sized plate heat exchangers with chevron plates. Journal of Heat Transfer, 2007. 129(3): p. 291-297.
[27] Kanaris, a.G., a.a. Mouza, and S.V. Paras, Optimal design of a plate heat exchanger with undulated surfaces. International Journal of Thermal Sciences, 2009. 48(6): p. 1184-1195.
[28] Taslim, M. and C. Wadsworth, An experimental investigation of the rib surface-averaged heat transfer coefficient in a rib-roughened square passage. Journal of turbomachinery, 1997. 119(2): p. 381-389.
[29] J.E. Hesselgraves, ompact Heat Exchangers: Selection, Design and Operation. 1st ed., Pergamon, 2001.
[30] S.M. Javid, A. Farshidianfar, and S. B. Golparvar, An Alternative Algorithm for Optimal. Advances in Mechanical Engineering, February 2015; vol. 7, 2: 865129.
[31] Design of Plate Heat Exchangers
[32] Gee, D.L. and R. Webb, Forced convection heat transfer in helically rib-roughened tubes. International Journal of Heat and Mass Transfer, 1980. 23(8): p. 1127-1136.
[33] Kim, H.-M. and K.-Y. Kim, Design optimization of rib-roughened channel to enhance turbulent heat transfer. International Journal of Heat and Mass Transfer, 2004. 47(23): p. 5159-5168.
[34] Kim, K.-Y. and Y.-M. Lee, Design optimization of internal cooling passage with V-shaped ribs. Numerical Heat Transfer, Part A: Applications, 2007. 51(11): p. 1103-1118.
[35] A. Bejan, Entropy Generation Through Heat and Fluid Flow. John Wiley and Sons, Inc., 1982.
Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007