Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29725

Select areas to restrict search in scientific publication database:
Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method
Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell-s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions.
Digital Object Identifier (DOI):


[1] P. Y. Tzeng and P. H. Chen, "Numerical visualization of gaseous microchannel flow in transition regime", in Proc. of PSFVIP-4, Chamonix, France, 2003.
[2] R. Raju and S. Roy, "Hydrodynamic study of high speed flow and heat transfer through a microchannel", J. Thermophys. Heat Transfer, vol. 19, pp.106-113, 2005.
[3] D. Jie et al., "Navier-Stokes simulation of gas flow in microdevices", J. Micromech. Microeng., vol. 10, pp.372-379, 2000.
[4] M. J. McNenly et al., "Slip model performance for micro-scale gas flows", in Proc. 36th AIAA Thermophysics Conf., AIAA 2003-4050, pp.1-9, 2003.
[5] F. Yan and B. Farouk, "Computation of fluid flow and heat transfer in ducts using the direct simulation Monte Carlo method", J. of Heat Transfer, vol. 124, pp. 609-616, 2002.
[6] A. Chaudhuri et al., "Finite volume simulation of supersonic to hypersonic gas flow and heat transfer through microchannel", Chem. Eng. Technol., vol. 30 no. 1, pp. 41-45, 2007.
[7] A. Chaudhuri et al., "Numerical study of fluid flow and heat transfer in partially heated microchannel using explicit finite volume method", Chem. Eng. Technol., vol. 30 no.4, pp.425-430, 2007.
[8] F. Yan and B. Farouk, "Numerical simulation of gas flow and mixing in a microchannel using the direct simulation Monte Carlo method", Microscale Thermophysical Eng., vol. 6, pp. 235-251, 2002.
[9] H. Xue and S. Chen, "DSMC simulation of microscale backward-facing step flow", Microscale Thermophysical Eng., vol.7, pp. 69-86, 2003.
[10] Y. W. Lee and M. Wong, "Pressure loss in construction microchannels", J. MEMS, vol. 11, pp. 236-244, 2002.
[11] S. Y. K. Lee et al., "Gas flow in microchannels with bends", J. Micromech. Microeng., vol. 11, pp. 635-644, 2001.
[12] A. Chaudhuri et al., "Numerical study of micro-scale gas flow using finite volume method", J. of Phys. Conf. Series, vol. 34, pp. 291-297, 2006.
[13] A. Chaudhuri et al., "Finite volume simulation of high speed combustion of acetylene-air mixture in microchannels", Chem. Eng. Technol., vol. 30, no.5, pp. 615-620, 2007.
[14] A. Chaudhuri et al., "Numerical study of flame acceleration in microchannel", NanoTech 2007 Conf., vol. 3, Chap. 3, pp. 149-152, 2007.
[15] M. S. Liou, C. J. Steffen(Jr.), "A new flux splitting method", J. Comp. Phys.,vol. 107, pp. 23-39, 1993.
[16] M. S. Liou, "A sequel to AUSM: AUSM+", J. Comp. Phys., vol. 129, pp. 364-382, 1996.
Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007