Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29644

Select areas to restrict search in scientific publication database:
Optimum Signal-to-noise Ratio Performance of Electron Multiplying Charge Coupled Devices
Electron multiplying charge coupled devices (EMCCDs) have revolutionized the world of low light imaging by introducing on-chip multiplication gain based on the impact ionization effect in the silicon. They combine the sub-electron readout noise with high frame rates. Signal-to-noise Ratio (SNR) is an important performance parameter for low-light-level imaging systems. This work investigates the SNR performance of an EMCCD operated in Non-inverted Mode (NIMO) and Inverted Mode (IMO). The theory of noise characteristics and operation modes is presented. The results show that the SNR of is determined by dark current and clock induced charge at high gain level. The optimum SNR performance is provided by an EMCCD operated in NIMO in short exposure and strong cooling applications. In contrast, an IMO EMCCD is preferable.
Digital Object Identifier (DOI):


[1] A. O-Grady, "A comparison of EMCCD, CCD and emerging technologies optimized for low light spectroscopy applications," in Proc. SPIE Biomedical Vibrational Spectroscopy III: Advances in Research and Industry, 2006, pp. 60930S-1-60930S-9.
[2] P. J. Pool, D. G. Morris, D. J. Burt, R. T. Bell, A. D. Holland, et al., "Application of electron multiplying CCD technology in space instrumentation," in Proc. SPIE Focal Plane Arrays for Space Telescopes II, 2005, pp. 59020A-1-59020A-6
[3] N. Smith, C. Coates, A. Giltinan, J. Howard, A. O'Connor, et al., "EMCCD Technology and its Impact on Rapid Low-Light Photometry," in Proc. SPIE Optical and Infrared Detectors for Astronomy, 2004, pp. 162-172.
[4] D. Dussault and P. Hoess, "Noise performance comparison of ICCD with CCD and EMCCD cameras," in Proc. SPIE Infrared Systems and Photoelectronic Technology, 2004, pp.195-204.
[5] C. Coates. (2006, January). EMCCD cameras taking imaging to a new level. Optics. (Online). pp. 29-31. Available:
[6] M. S. Robbins and B. J. Hadwen, "The Noise Performance of Electron Multiplying Charge Coupled Devices," IEEE Trans. Electron Devices, vol. 50, pp. 1227-1232, May. 2003.
[7] P. A. Jerram, P. J. Pool, D. J. Burt, R. T. Bell and M. S. Robbins, "Electron Multiplying CCDs," in SNIC Symposium, 2006, pp. 1-5.
[8] D. J. Denvir and C. G. Coates, "Electron-multiplying CCD technology: application to ultrasensitive detection of biomolecules," in Proc. SPIE Biomedical Nanotechnology Architectures and Applications, 2002, pp. 502-512.
[9] E2V Technologies Low-Light Technical Note 2, E2V Technologies Limited, L3Vision, Chelmsford, 2003.
[10] E2V Technologies Low-Light Technical Note 4, E2V Technologies Limited, L3Vision, Chelmsford, 2004.
[11] SITe 1024 x 1024 Thermoelectrically Cooled Scientific-Grade CCD, Scientific Imaging Technologies INC., SIA003A, Rockwell, 1995.
[12] J. Hynecek and T. Nishiwaki, "Excess Noise and Other Important Characteristics of Low Light Level Imaging Using Charge Multiplying CCDs," IEEE Trans. Electron Devices, vol. 50, pp. 239-245, Jan. 2003.
[13] Hamamatsu Learning Center: CCD Noise Sources and Signal-to-Noise Ratio. (Online). Available:
Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007