Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29534


Select areas to restrict search in scientific publication database:
10010024
Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.
Digital Object Identifier (DOI):

References:

[1] N. Noguchi and O. C. Barawid Jr., “Robot farming system using multiple robot tractors in Japan agriculture”, In 18th IFAC world congress, 2011.
[2] S. Blackmore, “New concepts in agricultural automation”, In HGCA conference, 2009.
[3] D. Ball, P. Ross, A. English, P. Milani, D. Richards, A. Bate, B. Upcraft, G. Wyeth and P. Corke, “Farm workers of the future”, In IEEE Robotics & Automation magazine, 2017.
[4] Y. Okada, D. Endo, K. Yoshida and K. Nagatani, “Trajectory control of crawler type mobile robot with consideration of a slip”, In The Robotics and Mechatronics Conference, 2007.
[5] N. Shalal, T. Low, C. McCarthy and N. Hancock, “A review of autonomous navigation systems in agricultural environments”, In SEAg 2013.
[6] J. Pentzer, S. Brennan and K. Reichard, “Model-based Prediction of Skid-steer Robot Kinematics Using Online Estimation of Track Instantaneous Centers of Rotation”, In Journal of Field Robotics, 2014.
[7] R. Lenain, B. Thuilot, C. Cariou and P. Martinet, “Adaptive and predictive nonlinear control for sliding vehicle guidance”, In IEEE/RSJ International conference on Intelligence Robots and Systems, 2014.
[8] H. Fang, R. Fan, B. Thuilot and P. Martinet, “Trajectory tracking control of farm vehicles in presence of sliding”, In IEEE/RSJ International conference on Intelligent Robots and Systems, 2005.
[9] C. Wen-Hua, Y. Jun, G. Lei and L. Shihua, “Disturbance-observer-based control and related methods – An overview,” In IEEE Transl. Industrial electronics., vol. 63, Feb. 2016, pp. 1083–1095
[10] S. Hyungbo, P. Gyunghoon, J. Youngjun, B. Juhoon and J. Nam Hoon, “Yet another tutorial of disturbance observer: robust stabilization and recovery of nominal performance”, In Control theory and technology. South China University of technology and academy of mathematics and systems science, vol. 14, Aug., 2016, pp. 237-249
[11] R. Gonzàlez, R. Rodoriguez and J. Guzmàn, “Autonomous Tracked Robots in Planar Off-Road Conditions”, Springer, 2014.
[12] Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi, “A Stable Tracking Control method for an autonomous mobile robot”, In Proceedings of IEEE International Conference on Robotics and Automation, 1990.
[13] T. M. Dar and R. G. Longoria, “Estimating traction coefficients of friction for small-scale robotic tracked vehicles”, In Proceedings of the ASME 2010 Dynamics Systems and Control Conference, 2010
[14] B. M. Nguyen, H. Fujimoto, Y. Hori, “Yaw angle control for autonomous vehicle using Kalman filter based disturbance observer”, In SAEJ. EVTeC and APE Japan, 2014.
[15] J.-J. E. Slotine and W. Li, “Applied Nonlinear Control”, Prentice Hall, 1991.
[16] F. Pourboghrat and M. P. Karlsson, “Adaptive control of dynamic mobile robots with nonholonomic constraints”, In Computers and Electrical Engineering 28, 2002.
[17] Boost-up your research work without wasting time and money, retrieved January 25, 2019 from http://www.dronyx.com/xbot-tracked-mobile-robot/.
[18] V-rep virtual robot experimentation platform, retrieved January 25, 2019 from http://www.coppeliarobotics.com/.
[19] Achieve true-to-life simulation, retrieved January 25, 2019 from https://www.cm-labs.com/vortex-studio/features/physics-based-mechanical-dynamics-engine/.
[20] S. Morita, T. Hiramatsu, M. Niccolini, A. Argiolas, M. Ragaglia, “Kinematic track modelling for fast multiple body dynamics simulation of tracked vehicle robot”, In The 24th International Conference on Methods and Models in Automation and Robotics, 2018.
Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007