Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29381

Select areas to restrict search in scientific publication database:
Power Flow Analysis for Radial Distribution System Using Backward/Forward Sweep Method
This paper proposes a backward/forward sweep method to analyze the power flow in radial distribution systems. The distribution system has radial structure and high R/X ratios. So the newton-raphson and fast decoupled methods are failed with distribution system. The proposed method presents a load flow study using backward/forward sweep method, which is one of the most effective methods for the load-flow analysis of the radial distribution system. By using this method, power losses for each bus branch and voltage magnitudes for each bus node are determined. This method has been tested on IEEE 33-bus radial distribution system and effective results are obtained using MATLAB.
Digital Object Identifier (DOI):


[1] S.C.Tripathy, G.Durga Prasad, O.P.Malik and G.S.Hope, “Load Flow for Ill-ConditionedPower Systems by a Newton like Method”, IEEE Trans., PAS-101, October 1982, pp.3648-365.
[2] A. AppaRao, M. Win Babu,” Forward Sweeping Method for Solving Radial Distribution Networks”, IJAREEIE Vol. 2, Issue 9, September 2013.
[3] G.X. LUO and A. Semlyen, “Efficient Load Flow For Large Weakly Meshed Net- works”, IEEE Transactions on Power Systems, Vol. 5, No. 4, November 1990, pp- 1309 to 1313.
[4] S. Lenhart and J. T.Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC, Boca Raton, 2007.
[5] A. R. Bergen, Power Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1986.
[6] Ray Daniel Zimmerman,” Comprehensive Distribution Power Flow:Modeling, Formulation, Solution Algorithms and Analysis” Cornell University 1995.
[7] A. Augugliaro, L. Dusonchet,” A backward sweep method for power flow solution in distribution networks” Electrical Power and Energy Systems 32 (2010) 271–280.
[8] Bompard, E. Carpaneto,” Convergence of the backward/forward sweep method for the load-flowanalysis of radial distribution systems” Electrical Power and Energy Systems 22 (2000) 521–530.
[9] Michael McAsey and LibinMou,” Convergence of the Forward- Backward Sweep Method inOptimal Control” IL 61625.
[10] Chiang, H.D.: ‘A decoupled load flow method for distribution power network algorithms, analysis and convergence study”, Electrical Power and Energy Systems, 13 (3), 130-138, 1991.
[11] M.E. Baran, F.F. Wu, Optimal Sizing of Capacitors Placed on a Radial DistributionSystem, IEEE Transactions on Power Delivery, Vol.4, no:1, pp.735-743, 1989.
[12] Goswami, S.K and BASU, S.K.: ‘Direct solution of distribution systems’,IEE Proc. C. , 188, (I),pp. 78-88, 1991.
[13] G.B. Jasmon, L.H.C. Lee, Distribution Network Reduction for Voltage StabilityAnalysis and Load Flow Calculations, Electrical Power & Energy Systems, Vol.13,no:1,pp. 9-13, 1991.
[14] B. Stott, “Review of Load-Flow Calculation Methods”, Proceedings of The IEEE, Vol. 62, No. 7, July 1974, pp. 916-929
[15] C.L Wadhwa, “Electrical Power Systems”, New Age International, 2010 edition
[16] R. SrinivasaRao, K. Ravindra,“Power Loss Minimization in Distribution System Using Network Reconfiguration in thePresence of Distributed Generation” IEEE Transactions On Power Systems, Vol. 28, No. 1, February 2013.
[17] S.Ganesh, “Network reconfiguration of distribution system using artificial bee colony algorithm”, WASET, International Journal of Electrical, Electronic Science and Engineering, Vol:8No:2, 2014
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007