Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29912


Select areas to restrict search in scientific publication database:
9997510
Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Abstract:
Several meteorological parameters were used for the  prediction of monthly average daily global solar radiation on  horizontal using recurrent neural networks (RNNs). Climatological  data and measures, mainly air temperature, humidity, sunshine  duration, and wind speed between 1995 and 2007 were used to design  and validate a feed forward and recurrent neural network based  prediction systems. In this paper we present our reference system  based on a feed-forward multilayer perceptron (MLP) as well as the  proposed approach based on an RNN model. The obtained results  were promising and comparable to those obtained by other existing  empirical and neural models. The experimental results showed the  advantage of RNNs over simple MLPs when we deal with time series  solar radiation predictions based on daily climatological data.
Digital Object Identifier (DOI):

References:

[1] A. Assi and M. Jama, "Estimating global Solar Radiation on Horizontal from Sunshine Hours in Abu Dhabi UAE”, Proceeding of the 4th International Conference on Renewable Energy Sources (RES’10), pp. 101-108, May 2010, Sousse, Tunisia.
[2] A. Assi and M. Al-Shamisi, "Prediction of Monthly Average Daily Global Solar Radiation in Al Ain City, UAE, Using Artificial Neural Networks,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference, pp. 508–512, Valencia, Spain, September 2010.
[3] Al-Alawi, S.M., Al-Hinai,, An ANN-Based Approach for Predicting Global Solar Radiation in Locations with no Measurements, Renewable Energy, Vol 14 (1–4), 1998 ,pp.199–204.
[4] E. Falayi , J. Adepitan and A. Rabiu, Empirical Models for the Correlation of Global Solar Radiation with Meteorological Data for Iseyin, Nigeria, Physical Sciences, 3 (9), 2008, pp.210-216.
[5] Emad A. Ahmed and M. El-Nouby Adam, Estimate of Global Solar Radiation by Using Artificial Neural Network in Qena, Upper Egypt, Journal of Clean Energy Technologies, Vol. 1, No. 2, April 2013.
[6] T. Khatib, A. Mohamed, M. Mahmoud, K. Sopian, Estimating Global Solar Energy Using Multilayer Perception Artificial Neural Network, International Journal of Energy, Issue 1, Vol. 6, 2012.
[7] Jiang Y. Computation of Monthly Mean Daily Global Solar Radiation in China Using Artificial Neural Networks and Comparison with Other Empirical Models. Energy 2009; 34(9).
[8] S. Haykin, Neural Networks and Learning Machines, 2009, 3rd Edition, Pearson Education, Inc., New Jersey.
[9] P. Stagge and B. Senho. An Extended Elman Net for Modelling Time Series. In International Conference on Artificial Neural Networks, 1997.
[10] I.M. Galvan and P. Isasi. Multi-Step Learning Rule for Recurrent Neural Models: An Application to Time Series Forecasting. Neural Processing Letters, (13):115{133, 2001.
[11] M.I. Jordan. Attractor Dynamics and Parallelism in a Connectionist Sequential Machine. In Proc. of the Eighth Annual Conference of the Cognitive Science Society, Pages 531-546. NJ: Erlbaum, 1986.
[12] M.I. Jordan. Serial order: A Parallel Distributed Processing Approach. Technical Report, Institute for Cognitive Science. University of California, 1986.
Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007