Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29725

Select areas to restrict search in scientific publication database:
Quantum Markov Modeling for Healthcare
A Markov model defines a system of states, composed by the feasible transition paths between those states, and the parameters of those transitions. The paths and parameters may be a representative way to address healthcare issues, such as to identify the most likely sequence of patient health states given the sequence of observations. Furthermore estimating the length of stay (LoS) of patients in hospitalization is one of the challenges that Markov models allow us to solve. However, finding the maximum probability of any path that gets to state at time t, can have high computational cost. A quantum approach allows us to take advantage of quantum computation since the calculated probabilities can be in several states, ending up to outperform classical computing due to the possible superposition of states when handling large amounts of data. The aid of quantum physics-based architectures and machine learning techniques are therefore appropriated to address the complexity of healthcare.
Digital Object Identifier (DOI):


[1] P. Wittek, “Quantum machine learning: what quantum computing means to data mining,” 2014.
[2] J. B., P. W., N. P., P. R., N. W., and S. l., “Quantum machine learning,” vol. 549, p. 195, 2017. (Online). Available:
[3] E. Rieffel and W. Polak, Quantum Computing: A Gentle Introduction, 1st ed. The MIT Press, 2011.
[4] A. Papageorgiou and J. Traub, “Measures of quantum computing speedup,” vol. 88, no. 02, p. 2316, 2013.
[5] S. Arunachalam and R. de Wolf, “A survey of quantum learning theory,” 2017.
[6] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for supervised and unsupervised machine learning,” arXiv preprint arXiv:1307.0411, 2013.
[7] M. Nielsen and I. Chuang, Quantum computation and quantum information. Cambridge university press, 2010.
[8] P. LM, M. A, A. M, and et al., “Experimental superposition of orders of quantum gates,” Nature Communications, vol. 6, p. 7913, 2015.
[9] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” American Physical Society, Rev. Mod. Phys., vol. 81, no. 2, pp. 865–942, 2009.
[10] H. Jeong, L. Kim, M. S., and Jinhyoung, “Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel,” American Physical Society, Phys. Rev. A, vol. 64, no. 5, p. 052308, 2001.
[11] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta, “Efficient z-gates for quantum computing,” arXiv:1612.00858, 2016.
[12] A. Jeremic and K. Tan, “Predicting the length of stay for neonates using heart-rate markov models,” Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, vol. 2008, pp. 2912–5, 2008.
[13] H. Xie, T. J. Chaussalet, and P. H. Millard, “A continuous time markov model for the length of stay of elderly people in institutional long-term care,” Journal of the Royal Statistical Society Series A, vol. 168, pp. 51–61, 2005.
[14] P. A., C. W., and D. RJ., “Predicting the length of stay of patients admitted for intensive care using a first step analysis,” Health services and outcomes research methodology, vol. 6, no. 3–4, pp. 127–138, 2006.
[15] T. V. Le, C. K. Kwoh, E. S. Teo, and K. H. Lee, “Analyzing trends of hospital length of stay using phase-type distributions,” IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, pp. 1026–1033, 2011.
[16] A. A. Verburg IW, E. S., H. R. A.-H. A, de Jonge E, P. N, and de Keizer NF, “Which models can i use to predict adult icu length of stay? a systematic review.” Crit Care Med., vol. 45, no. 2, pp. e222–e231, 2017 Feb.
[17] A. Marshall, C. Vasilakis, and E. El-Darzi, “Length of stay-based patient flow models: recent developments and future directions,” pp. 213–20, Aug 2005.
[18] T. Johnson, H. Clark, S. R., and D. Jaksch, “What is a quantum simulator?” EPJ Quantum Technology, vol. 1, no. 1, pp. 1–12, 2014.
[19] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Information, vol. 2, pp. 15 023+, 2016. (Online). Available:
[20] M. Cholewa, P. Gawron, P. Gomb, and D. Kurzyk, “Quantum hidden markov models based on transition operation matrices,” Quantum Information Processing, vol. 16, no. 4, p. 101, 2017.
[21] S. Srinivasan, G. Gordon, and B. Boots, “Learning hidden quantum markov models,” arXiv:1710.09016, 2017.
[22] G. Forney Jr, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–278, 1973.
[23] J. S. Rahhal, D. I. Abu-Al-Nadi, and M. Hawa, “Evolutionary computation in coded communications: an implementation of viterbi algorithm,” Evolutionary Computation, InTech, 2009.
[24] J. R. Grice and D. Meyer, “A quantum algorithm for viterbi decoding of classical convolutional codes,” Quantum Information Processing, vol. 14, no. 7, pp. 2307–2321, 2015.
[25] U. of Southern California, “Viterbi algorithm goes quantum.” ScienceDaily, 2008.
Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007