Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
8260
Stochastic Comparisons of Heterogeneous Samples with Homogeneous Exponential Samples
Abstract:
In the present communication, stochastic comparison of a series (parallel) system having heterogeneous components with random lifetimes and series (parallel) system having homogeneous exponential components with random lifetimes has been studied. Further, conditions under which such a comparison is possible has been established.
Digital Article Identifier (DAI):

References:

[1] N. Balakrishnan and C.R. Rao, Handbook of Statistics 16 - Order Statistics: Theory and Methods, Elsevier, New York, 1998a.
[2] N. Balakrishnan and C.R. Rao Handbook of Statistics 17 - Order Statistics: Applications, Elsevier, New York, 1998b.
[3] P. Pledger and F. Proschan, Comparison of Order Statistics and of spacings from Heterogenous distributions, in : J.S. Rustagi (Ed.), Optimizing Methods in Statistics, Academic Press, New York, 1971.
[4] S.C. Kochar and J. Rojo, Some new results on stochastic comparisons of spacings from heterogeneous exponential distributions, Journal of Multivariate Analysis 57, 69-83, 1996.
[5] S.C. Kochar and M. Xu, Stochastic comparisons of parallel systems when components have proportional hazard rates, Probability in the Engineering and Informational Sciences 21, 597-609, 2007.
[6] B. Khaledi and S.C. Kochar, Sample range some stochastic comparisons results, Calcutta Statistical Association Bulletin 50, 283-291, 2000.
[7] C. Genest, S.C. Kochar and M. Xu, On the range of heterogeneous samples, Journal of Multivariate Analysis, 100, 1587-1592, 2009.
[8] P. Zhao and X. Li Stochastic order of sample range from heterogeneous exponential random variables, Probability in the Engineering and Informational Sciences 23, 17-29, 2009.
[9] T. Mao and T. Hu, Equivalent characterizations on orderings of order statistics and sample ranges, Probability in the Engineering and Informational Sciences, 24, 245-262, 2010.
[10] M. Xu and N. Balakrishnan, On the convolution of heterogeneous Bernoulli random variables, Journal of Applied Probability, 48 (3), 877- 884, 2011.
[11] S.C. Kochar and M. Xu, Stochastic comparisons of spacings from heterogeneous samples, In: Advances in Directional and Linear Statistics (Eds., M. Wells and A. Sengupta), 113-129, Springer, New York, 2011a.
[12] S.C. Kochar and M. Xu, Some unified results on comparing linear combinations of independent gamma random variables, Technical Report, Illinois State University, Normal, Illinois, 2011b.
[13] R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing, To Begin With, Silver Spring, Maryland, 1981.
[14] M. Shaked and J.G. Shanthikumar, Stochastic Orders and Their Applications, Springer, New York, 2007.
[15] A. M¨uller and D. Stoyan, Comparison Methods for Stochastic Models and Risks, Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester, 2002.

Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007