Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29710


Select areas to restrict search in scientific publication database:
10003048
Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions
Abstract:
This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz Equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis.
Digital Object Identifier (DOI):

References:

[1] World Health Organization (WHO), (2010). Global tuberculosis control: WHO report 2010, Geneva, Switzerland, WHO/HTM/TB/2010.7.
[2] World Health Organization (WHO), (2009). Global tuberculosis Control: Epidemiology, strategy, financing, WHO report 2009, Geneva, Switzerland, WHO/HTM/TB/2009.411.
[3] Kumar D., Rao K. V. S., (2011). Regulation between Survival persistence. Microbes infect., 13: 121 – 133.
[4] Velayati A. A., Farnia P., et al., (2009). Totally drug-resistant tuberculosis strains: evidence of adaptation at the cellular level.Eur. Resp. J., 34: 1202 – 1203.
[5] Nunes J. E. S., Ducati R. G., Breda A., Rosado L. A., De Souza B. M., Palma M. S., Santos D. S., Basso L. A., (2011). Molecular, kinetic Thermodynamic and Structural analysis of mycobacterium tuberculosis hisD-encoded metal-dependent dimerichistidinol dehydrogenase (EC1.1.1.23). Archives Biochemistry and Biophysics, 512: 143 – 153.
[6] Adeeb S., Gauhar R., Mazhar U., Waleed AK, Young SL., (2013). Challenges in the development of drugs for the treatment of tuberculosis. The Brazilian journal of infectious diseases, 17(1): 74 – 81.
[7] Gonzalez-Juarrero M., Turner O. C., Turner J., Marietta P., Brooks J. V., Orme I. M., (2001). Temporal and Spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with mycobacterium tuberculosis. Infect. Immun. 69: 1722 – 1728.
[8] Neumann A. W., van Oss C.J., Omenyi S.N., Absolom D. R., Viser J., (1983). Adv Colloid Interface Sci, 18: 133.
[9] van Oss C. J., Gillman C. F., and Neuman A. W.,(1975). Phagocytic Engulfment and Cell Adhesiveness” Marcel Dekker, New York.
[10] Absolom D. R., Francis D. W., Zingg w., van Oss C. J., Neumann A. W., (1982). “Phagocytosis of bacteria by platelets: Surface thermodynamics”, Journal of Colloid and Interface Science, 85: 1, 168 – 177.
[11] Omenyi S. N., (1978). Attraction and Repulsion of particles by Solidification Fronts” PhD Dissertation, University of Toronto, p.23, 33, 34.
[12] Neumann A. W., Absolom D. R., Francis D. W., van Oss C. J. (1983). Blood Cell and Protein Surface Tensions, Annals New York Academy of Sciences, p.277.
[13] Hough D. H. and White L. R., (1980), Advanced Colloid Interface Science, 14: 3.
[14] Achebe C. H., Omenyi S. N. and Manafa D. O., (2012).“Human Immunodeficiency Virus (HIV) – Blood Interactions: Surface Thermodynamics Approach”, Proceedings of the International Multi- Conference of Engineers and Computer Scientists 2012, Hong Kong, 136 – 141.
[15] Omenyi S. N., Smith R. P., and Neumann A. W., (1980). Journal of Colloid and Interface Science, 75(1): 117.
[16] Moy E. and Neumann A. W., (1990). Colloids and Surfaces, 43: 349 – 365.
[17] Neumann A. W., (1974), Advanced Colloids Interface Sciences, 4: 105.
[18] Hamaker H. C., (1937). Physica, 4: 1058.
[19] Chukwuneke, J. L. (2015). Mycobacterium Tuberculosis (M-TB) – Human Sputum Interactions: Surface Thermodynamics Approach” PhD Dissertation, Nnamdi Azikiwe University, Awka, Nigeria.
[20] Dzyaloshinskii I. E., Lifshitz E. M et al (1961), Advanced Physics, 10: 165.
[21] Robinson, T.S., (1952): Proc. Phys. Soc. London 65B910.
[22] Charles, Kittel, (1996): Introduction to Solid state Physics, 7th Ed., John Willey and Sons Inc. New York, p.308.
Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007