Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29404

Select areas to restrict search in scientific publication database:
Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising
We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on the following procedure: We apply 1) Bidimentional Discrete Wavelet Transform (DWT-2D) to the Noisy Microarray, 2) scaling and rounding to the coefficients of the highest subbands (to obtain integer and positive coefficients), 3) bit-slicing to the new highest subbands (to obtain bit-planes), 4) then we apply the Systholic Boolean Orthonormalizer Network (SBON) to the input bit-plane set and we obtain two orthonormal otput bit-plane sets (in a Boolean sense), we project a set on the other one, by means of an AND operation, and then, 5) we apply re-assembling, and, 6) rescaling. Finally, 7) we apply Inverse DWT-2D and reconstruct a microarray from the modified wavelet coefficients. Denoising results compare favorably to the most of methods in use at the moment.
Digital Object Identifier (DOI):


[1] E.C. Rouchka. (2004, April). Lecture 12: Microarray Image Analysis. (Online). Available: CECS694/Lecture12.ppt
[2] X.H. Wang, S.H. Istepanian, and Y.H. Song, "Microarray Image Enhancement by Denoi-sing Using Stationary Wavelet Transform," IEEE Transactions on Nanobioscience, vol.2, no. 4, pp.184-189, December 2003. (Online). Available: momed/papers/IEEE_TN_Micorarray_Wavelet%20Denoising.pdf
[3] H.S. Tan. (2001, October). Denoising of Noise Speckle in Radar Image. (Online). Available:
[4] H. Guo, J.E. Odegard, M. Lang, R.A. Gopinath, I. Selesnick, and C.S. Burrus, "Speckle reduction via wavelet shrinkage with application to SAR based ATD/R," Technical Report CML TR94- 02, CML, Rice University, Houston, 1994.
[5] D.L. Donoho and I.M. Johnstone, "Adapting to unknown smoothness via wavelet shrinkage," Journal of the American Statistical Association, vol. 90, no. 432, pp. 1200-1224, 1995.
[6] S.G. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression," IEEE Transactions on Image Processing, vol. 9, no. 9, pp.1532-1546, September 2000.
[7] X.-P. Zhang, "Thresholding Neural Network for Adaptive Noise reduction," IEEE Trans. on Neural Networks, vol.12, no. 3, pp.567- 584, May 2001.
[8] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[9] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A. K. Peter Wellesley, Massachusetts, 1996.
[10] S. G. Mallat, "Multiresolution approximations and wavelet orthonormal bases of L2 (R)," Transactions of the American Mathematical Society, 315(1), pp.69-87, 1989a.
[11] A. Grossman and J. Morlet, "Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape," SIAM J. App Math, 15: pp.723-736, 1984.
[12] C. Valens. (2004). A really friendly guide to wavelets. (Online). Available: clemens/wavelets/wavelets.html
[13] G. Kaiser, A Friendly Guide To Wavelets, Boston:Birkhauser, 1994.
[14] I. Daubechies, "Different Perspectives on Wavelets," in Proceedings of Symposia in Applied Mathematics, vol. 47, American Mathematical Society, USA, 1993.
[15] J. S. Walker, A Primer on Wavelets and their Scientific Applications, Chapman & Hall/CRC, New York, 1999.
[16] E. J. Stollnitz, T.D. DeRose, and D.H. Salesin, Wavelets for Computer Graphics: Theory and Applications, Morgan Kaufmann Publishers, San Francisco, 1996.
[17] J. Shen and G. Strang, "The zeros of the Daubechies polynomials," in Proc. American Mathematical Society, 1996.
[18] A.K. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs, New Jersey, 1989.
[19] M. Mastriani, "Enhanced Boolean Correlation Matriz Memory", (RNL02), in Proceedings of X RPIC Reunión de Trabajo en Procesamiento de la Información y Control, San Nicolás, Buenos Aires, Argentina, October 8-10, 2003.
[20] G. Delfino and F. Martinez. (2000, March). Watermarking insertion in digital images (spanish). (Online). Available:
[21] Y. Yu, and S.T. Acton, "Speckle Reducing Anisotropic Diffusion," IEEE Trans. on Image Processing, vol. 11, no. 11, pp.1260-1270, 2002.
[22] M. Mastriani and A. Giraldez, "Enhanced Directional Smoothing Algorithm for Edge-Preserving Smoothing of Synthetic-Aperture Radar Images," Journal of Measurement Science Review, vol 4, no. 3, pp.1-11, 2004. (Online). Available:
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007