Open Science Research Excellence
%0 Journal Article
%A A. Srion and  W. Thepsuwan and  N. Monmaturapoj
%D 2014 
%J  International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 96, 2014
%T Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method
%V 96
%X Two Lithium Disilicate (LD) glass ceramics based on
SiO2-Li2O-K2O-Al2O3 system were prepared through a glass melting
method. The glass rods were then fabricated into dental crowns via a
hot pressing at 900˚C and 850˚C in order to study the effect of the
pressing temperatures on the phase formation and microstructure of
the glasses. Different samples of as cast glass and heat treated
samples (600˚C and 700˚C) were used to press for investigating the
effect of an initial microstructure on the hot pressing technique. Xray
diffraction (XRD) and scanning electron microscopy (SEM) were
performed to determine the phase formation and microstructure of the
samples, respectively. XRD results show that the main crystalline
structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3,
Ca5 (PO4)3F and SiO2 as minor phases. Glass compositions with
different heat treatment temperatures exhibited a difference phase
formations but have less effect during pressing. SEM micrographs
showed the microstructure of Li2Si2O5 as lath-like shape in all
glasses. With increasing the initial heat treatment temperature, the
longer the lath-like crystals of lithium disilicate were increased
especially when using glass heat treatment at 700˚C followed by
pressing at 900˚C. This could be suggested that LD1 heat treatment at
700˚C which pressing at 900˚C presented the best formation by the
hot pressing and compiled microstructure.

%P 1439 - 1442