Open Science Research Excellence
@article{(International Science Index):http://waset.org/publications/10001873,
  title    = {Extraction of Bran Protein Using Enzymes and Polysaccharide Precipitation},
  author    = {Sudarat Jiamyangyuen and  Tipawan Thongsook and  Riantong Singanusong and  Chanida Saengtubtim},
  country   = {Thailand},
  institution={Naresuan University},
  abstract  = {Rice bran is normally used as a raw material for rice
bran oil production or sold as feed with a low price. Conventionally,
the protein in defatted rice bran was extracted using alkaline
extraction and acid precipitation, which involves in chemical usage
and lowering some nutritious component. This study was conducted
in order to extract of rice bran protein concentrate (RBPC) from
defatted rice bran using enzymes and employing polysaccharides in a
precipitating step. The properties of RBPC obtained will be compared
to those of a control sample extracted using a conventional method.
The results showed that extraction of protein from rice bran using
enzymes exhibited the higher protein recovery compared to that
extraction with alkaline. The extraction conditions using alcalase 2%
(v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield
(32.09%) in extracted solution compared to other enzymes. Rice bran
protein concentrate powder prepared by a precipitation step using
alginate (protein in solution: alginate 1:0.016) exhibited the highest
protein (27.55%) and yield (6.84%). Precipitation using alginate was
better than that of acid. RBPC extracted with alkaline (ALK) or
enzyme alcalase (ALC), then precipitated with alginate (AL)
(samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation
rate of 75% and 91.30%, respectively. Therefore, protein
precipitation using alginate was then selected. Amino acid profile of
control sample, and sample precipitated with alginate, as compared to
casein and soy protein isolated, showed that control sample showed
the highest content among all sample. Functional property study of
RBP showed that the highest nitrogen solubility occurred in pH 8-10.
There was no statically significant between emulsion capacity and
emulsion stability of control and sample precipitated by alginate.
However, control sample showed a higher of foaming capacity and
foaming stability compared to those of sample precipitated with
alginate. The finding was successful in terms of minimizing
chemicals used in extraction and precipitation steps in preparation of
rice bran protein concentrate. This research involves in a production
of value-added product in which the double amount of protein (28%)
compared to original amount (14%) contained in rice bran could be
beneficial in terms of adding to food products e.g. healthy drink with
high protein and fiber. In addition, the basic knowledge of functional
property of rice bran protein concentrate was obtained, which can be
used to appropriately select the application of this value-added
product from rice bran.},
    journal   = {International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering},  volume    = {9},
  number    = {6},
  year      = {2015},
  pages     = {675 - 679},
  ee        = {http://waset.org/publications/10001873},
  url       = {http://waset.org/Publications?p=102},
  bibsource = {http://waset.org/Publications},
  issn      = {eISSN:1307-6892},
  publisher = {World Academy of Science, Engineering and Technology},
  index     = {International Science Index 102, 2015},
}