Scholarly Research Excellence
@article{(International Science Index):http://waset.org/publications/10001906,
  title    = {Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey},
  author    = {Melis Inalpulat and  Levent Genc},
  country   = {Turkey},
  institution={Canakkale Onsekiz Mart University},
  abstract  = {Land Use Land Cover (LULC) changes due to human
activities and natural causes have become a major environmental
concern. Assessment of temporal remote sensing data provides
information about LULC impacts on environment. Land Surface
Temperature (LST) is one of the important components for modeling
environmental changes in climatological, hydrological, and
agricultural studies. In this study, LULC changes (September 7, 1984
and July 8, 2014) especially in agricultural lands together with
population changes (1985-2014) and LST status were investigated
using remotely sensed and census data in South Marmara Watershed,
Turkey. LULC changes were determined using Landsat TM and
Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM
and OLI images were classified using supervised classification
method to prepare LULC map including five classes including Forest
(F), Grazing Land (G), Agricultural Land (A), Water Surface (W),
Residential Area-Bare Soil (R-B) classes. The LST image was also
derived from thermal bands of the same dates.
LULC classification results showed that forest areas, agricultural
lands, water surfaces and residential area-bare soils were increased as
65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In
comparison, a dramatic decrement occurred in grazing land (107985
ha) within three decades. The population increased 29% between
years 1984-2014 in whole study area. Along with the natural causes,
migration also caused this increase since the study area has an
important employment potential. LULC was transformed among the
classes due to the expansion in residential, commercial and industrial
areas as well as political decisions. In the study, results showed that
agricultural lands around the settlement areas transformed to
residential areas in 30 years.
The LST images showed that mean temperatures were ranged
between 26-32°C in 1984 and 27-33°C in 2014. Minimum
temperature of agricultural lands was increased 3°C and reached to
23°C. In contrast, maximum temperature of A class decreased to
41°C from 44°C. Considering temperatures of the 2014 R-B class and
1984 status of same areas, it was seen that mean, min and max
temperatures increased by 2°C.
As a result, the dynamism of population, LULC and LST resulted
in increasing mean and maximum surface temperatures, living
spaces/industrial areas and agricultural lands.},
    journal   = {International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering},  volume    = {9},
  number    = {8},
  year      = {2015},
  pages     = {930 - 935},
  ee        = {http://waset.org/publications/10001906},
  url       = {http://waset.org/Publications?p=104},
  bibsource = {http://waset.org/Publications},
  issn      = {eISSN:1307-6892},
  publisher = {World Academy of Science, Engineering and Technology},
  index     = {International Science Index 104, 2015},
}