Open Science Research Excellence
%0 Journal Article
%A Yeo Kyeong Lee and  Hae Won Min and  Ji Yeon Kang and  Hee Sun Kim and  Yeong Soo Shin
%D 2015 
%J  International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 103, 2015
%T Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
%U http://waset.org/publications/10002085
%V 103
%X In recent years, fire accidents have been steadily
increased and the amount of property damage caused by the accidents
has gradually raised. Damaging building structure, fire incidents bring
about not only such property damage but also strength degradation and
member deformation. As a result, the building structure undermines its
structural ability. Examining the degradation and the deformation is
very important because reusing the building is more economical than
reconstruction. Therefore, engineers need to investigate the strength
degradation and member deformation well, and make sure that they
apply right rehabilitation methods. This study aims at evaluating
deformation characteristics of fire damaged and rehabilitated normal
strength concrete beams through both experiments and finite element
analyses. For the experiments, control beams, fire damaged beams and
rehabilitated beams are tested to examine deformation characteristics.
Ten test beam specimens with compressive strength of 21MPa are
fabricated and main test variables are selected as cover thickness of
40mm and 50mm and fire exposure time of 1 hour or 2 hours. After
heating, fire damaged beams are air-recurred for 2 months and
rehabilitated beams are repaired with polymeric cement mortar after
being removed the fire damaged concrete cover. All beam specimens
are tested under four points loading. FE analyses are executed to
investigate the effects of main parameters applied to experimental
study. Test results show that both maximum load and stiffness of the
rehabilitated beams are higher than those of the fire damaged beams.
In addition, predicted structural behaviors from the analyses also show
good rehabilitation effect and the predicted load-deflection curves are
similar to the experimental results. For the further, the proposed
analytical method can be used to predict deformation characteristics of
fire damaged and rehabilitated concrete beams without suffering from
time and cost consuming of experimental process.
%P 855 - 861