Open Science Research Excellence
@article{(International Science Index):,
  title    = {Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge},
  author    = {Oluyemi O. Awolusi and  Abimbola M. Enitan and  Sheena Kumari and  Faizal Bux},
  country   = {South Africa},
  institution={University of Venda},
  abstract  = {Nitrification is essential to biological processes
designed to remove ammonia and/or total nitrogen. It removes excess
nitrogenous compound in wastewater which could be very toxic to
the aquatic fauna or cause serious imbalance of such aquatic
ecosystem. Efficient nitrification is linked to an in-depth knowledge
of the structure and dynamics of the nitrifying community structure
within the wastewater treatment systems. In this study, molecular
technique was employed for characterizing the microbial structure of
activated sludge [ammonia oxidizing bacteria (AOB) and nitrite
oxidizing bacteria (NOB)] in a municipal wastewater treatment with
intention of linking it to the plant efficiency. PCR based phylogenetic
analysis was also carried out. The average operating and
environmental parameters as well as specific nitrification rate of plant
was investigated during the study. During the investigation the average temperature was 23±1.5oC.
Other operational parameters such as mixed liquor suspended solids
and chemical oxygen demand inversely correlated with ammonia
removal. The dissolved oxygen level in the plant was constantly
lower than the optimum (between 0.24 and 1.267 mg/l) during this
study. The plant was treating wastewater with influent ammonia
concentration of 31.69 and 24.47 mg/L. The influent flow rates
(ML/Day) was 96.81 during period. The dominant nitrifiers include:
Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB
had correlation with nitrification efficiency and temperature. This
study shows that the specific ammonia oxidizing rate and the specific
nitrate formation rates can serve as good indicator of the plant overall
nitrification performance.},
    journal   = {International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering},  volume    = {9},
  number    = {9},
  year      = {2015},
  pages     = {1098 - 1105},
  ee        = {},
  url       = {},
  bibsource = {},
  issn      = {eISSN:1307-6892},
  publisher = {World Academy of Science, Engineering and Technology},
  index     = {International Science Index 105, 2015},