Open Science Research Excellence
%0 Journal Article
%A Dong Xie and  Jun Zhao and  Yiming Weng
%D 2015 
%J  International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 103, 2015
%T Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives
%U http://waset.org/publications/10002849
%V 103
%X The objective of this study was to synthesize and
characterize the poly(alkenoic acid)s with different molecular
structures, use these polymers to formulate a dental cement
restorative, and study the effect of molecular structures on reaction
kinetics, viscosity, and mechanical strengths of the formed polymers
and cement restoratives. In this study, poly(alkenoic acid)s with
different molecular structures were synthesized. The purified
polymers were formulated with commercial Fuji II LC glass fillers to
form the experimental cement restoratives. The reaction kinetics was
studied via 1HNMR spectroscopy. The formed restoratives were
evaluated using compressive strength, diametral tensile strength,
flexural strength, hardness and wear-resistance tests. Specimens were
conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II
LC restorative was used as control. The results show that the higher
the arm number and initiator concentration, the faster the reaction
was. It was also found that the higher the arm number and branching
that the polymer had, the lower the viscosity of the polymer in water
and the lower the mechanical strengths of the formed restorative. The
experimental restoratives were 31-53% in compressive strength, 37-
55% in compressive modulus, 80-126% in diametral tensile strength,
76-94% in flexural strength, 4-21% in fracture toughness and 53-96%
in hardness higher than Fuji II LC. For wear test, the experimental
restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional
wear depths of Fuji II LC in each wear cycle. The aging study also
showed that all the experimental restoratives increased their strength
continuously during 30 days, unlike Fuji II LC. It is concluded that
polymer molecular structures have significant and positive impact on
mechanical properties of dental cement restoratives.
%P 585 - 592