Open Science Research Excellence
%0 Journal Article
%A Reza Eslami-Farsani and  Hamed Khosravi and  Saba Fayazzadeh
%D 2015 
%J  International Journal of Chemical and Molecular Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 108, 2015
%T Using 3-Glycidoxypropyltrimethoxysilane Functionalized SiO2 Nanoparticles to Improve Flexural Properties of Glass Fibers/Epoxy Grid-Stiffened Composite Panels
%U http://waset.org/publications/10003233
%V 108
%X Lightweight and efficient structures have the aim to
enhance the efficiency of the components in various industries.
Toward this end, composites are one of the most widely used
materials because of durability, high strength and modulus, and low
weight. One type of the advanced composites is grid-stiffened
composite (GSC) structures, which have been extensively considered
in aerospace, automotive, and aircraft industries. They are one of the
top candidates for replacing some of the traditional components,
which are used here. Although there are a good number of published
surveys on the design aspects and fabrication of GSC structures, little
systematic work has been reported on their material modification to
improve their properties, to our knowledge. Matrix modification
using nanoparticles is an effective method to enhance the flexural
properties of the fibrous composites. In the present study, a silanecoupling
agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was
introduced onto the silica (SiO2) nanoparticle surface and its effects
on the three-point flexural response of isogrid E-glass/epoxy
composites were assessed. Based on the Fourier Transform Infrared
Spectrometer (FTIR) spectra, it was inferred that the 3-GPTS
coupling agent was successfully grafted onto the surface of SiO2
nanoparticles after modification. Flexural test revealed an
improvement of 16%, 14%, and 36% in stiffness, maximum load and
energy absorption of the isogrid specimen filled with 3 wt.% 3-
GPTS/SiO2 compared to the neat one. It would be worth mentioning
that in these structures, considerable energy absorption was observed
after the primary failure related to the load peak. In addition, 3-
GPTMS functionalization had a positive effect on the flexural
behavior of the multiscale isogrid composites. In conclusion, this
study suggests that the addition of modified silica nanoparticles is a
promising method to improve the flexural properties of the gridstiffened
fibrous composite structures.
%P 1455 - 1458