Open Science Research Excellence
%0 Journal Article
%A Ferhat Kadioglu and  Hasan Puskul
%D 2016 
%J  International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 109, 2016
%T Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints
%V 109
%X A composite material with carbon fiber and polymer
matrix has been used as adherent for manufacturing adhesive joints.
In order to evaluate different fiber orientations on joint performance,
the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were
used in the single lap joint configuration. The joints with an overlap
length of 25 mm were prepared according to the ASTM 1002
specifications and subjected to tensile loadings. The structural
adhesive used was a two-part epoxy to be cured at 70°C for an hour.
First, mechanical behaviors of the adherents were measured using
three point bending test. In the test, considerations were given to
stress to failure and elastic modulus. The results were compared with
theoretical ones using rule of mixture. Then, the joints were
manufactured in a specially prepared jig, after a proper surface
preparation. Experimental results showed that the fiber orientations
of the adherents affected the joint performance considerably; the
joints with ±45° adherents experienced the worst shear strength, half
of those with 0° adherents, and in general, there was a great
relationship between the fiber orientations and failure mechanisms.
Delamination problems were observed for many joints, which were
thought to be due to peel effects at the ends of the overlap. It was
proved that the surface preparation applied to the adherent surface
was adequate. For further explanation of the results, a numerical
work should be carried out using a possible non-linear analysis.
%P 65 - 68