TY - JFULL
AU - Lina Wu and Jia Liu and Ye Li
PY - 2016/11/
TI - Discovering Liouville-Type Problems for p-Energy Minimizing Maps in Closed Half-Ellipsoids by Calculus Variation Method
T2 - International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering
SP - 526
EP - 533
EM - lwu@bmcc.cuny.edu
VL - 10
SN - 1307-6892
UR - http://waset.org/publications/10006222
PU - World Academy of Science, Engineering and Technology
NX - International Science Index 118, 2016
N2 - The goal of this project is to investigate constant
properties (called the Liouville-type Problem) for a p-stable map
as a local or global minimum of a p-energy functional where
the domain is a Euclidean space and the target space is a
closed half-ellipsoid. The First and Second Variation Formulas
for a p-energy functional has been applied in the Calculus
Variation Method as computation techniques. Stokes’ Theorem,
Cauchy-Schwarz Inequality, Hardy-Sobolev type Inequalities, and
the Bochner Formula as estimation techniques have been used to
estimate the lower bound and the upper bound of the derived
p-Harmonic Stability Inequality. One challenging point in this project
is to construct a family of variation maps such that the images
of variation maps must be guaranteed in a closed half-ellipsoid.
The other challenging point is to find a contradiction between the
lower bound and the upper bound in an analysis of p-Harmonic
Stability Inequality when a p-energy minimizing map is not constant.
Therefore, the possibility of a non-constant p-energy minimizing
map has been ruled out and the constant property for a p-energy
minimizing map has been obtained. Our research finding is to explore
the constant property for a p-stable map from a Euclidean space into
a closed half-ellipsoid in a certain range of p. The certain range of
p is determined by the dimension values of a Euclidean space (the
domain) and an ellipsoid (the target space). The certain range of p
is also bounded by the curvature values on an ellipsoid (that is, the
ratio of the longest axis to the shortest axis). Regarding Liouville-type
results for a p-stable map, our research finding on an ellipsoid is a
generalization of mathematicians’ results on a sphere. Our result is
also an extension of mathematicians’ Liouville-type results from a
special ellipsoid with only one parameter to any ellipsoid with (n+1)
parameters in the general setting.
ER -